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Algebra as Tekhne
Artefacts, Symbols and Equations in the Classroom’

Luis RADFORD, Ecole des sciences de I éducation, Université
Laurentienne,Ontario, Canada

ABSTRACT  Inthis article we describe and analyse a teaching sequence whose
goal was to introduce students to the operation of the unknown and to the related
elementary algebraic techniques to solve linear equations. The design of the
activity and the analysis of the students’ reasoning were conducted within a
semiotic-cultural theoretical framework. A discourse analysis of the students’
interaction in the classroom suggests that the overcoming of the well-known
difficulties that novice students usually encounter in operating on the unknown,
as found in traditional approaches to algebra, was accomplished here through
the students’ complex co-ordination of different sign systems (gestures, natural
language, drawings, etc.) and their successful mastery and articulation of levels
of abstraction (going from manual industrious actions to intellectual and sign-
based actions).

INTRODUCTION

The introduction to symbolic algebra in Junior High School is one of the teaching
points that really worries teachers. Indeed, experience shows, again and again,
that the learning of algebra represents a key moment in the students’ school life
and one in which many problems usually arise. If students manage to get a certain
sense of algebra, then they will probably be able to go further. For many, however,
this is not the case.

One of the didactic problems in the teaching and learning of algebra is related to
the students’ understanding of algebraic symbolism and its meaning. A traditional
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approach to algebra will put the students in front of an endless page of equations
to be solved. This activity (as well as the formal manipulation of symbolic
expressions) seems rather esoteric and vain to the students who, in the end, end
up making errors that previous research has clearly identified. More than 20 years
ago, Matz published an inventory of students’ errors. Among them are the
following:

(1) Evaluating 4X when X=6 as 46 or as 46X

AX +BY

(2) Simplifying to A+B

Matz (1980) held that these errors are produced as extrapolation techniques. That
is, the individual interprets the problem in terms of a previous base knowledge
and applies rules that are valid in the base knowledge (without necessarily being
valid in the extrapolated case, like in the aforementioned examples).

The presence of errors such as those in Matz’s examples is a token of the students’
difficulties in understanding the intricate system of rules of sign-use in algebra.

- One of the didactic problems for a teacher is precisely to look for meaningful

situations out of which signs, equations, and symbolic expressions will make
sense. This problem is far from trivial (see e.g. Bednarz et al. (1996), Sutherland
et al. (2001)). One of the reasons is that to get more from algebra, symbols are
required. But if we start by asking the students to deal with formal manipulations
then, as said previously, it is difficult for the students to make sense of algebra. To
make matters worse, students’ willingness to learn (as broad as it may be) has a
limit and it is not surprising that soon the students start asking the reasons for

- learning such a hieroglyphic-like activity. The students’ short-term expectations

are difficult to meet despite the teachers’ enthusiastic and firm arguments of a
future use of algebra in engineering, applied mathematics and other scientific
domains.

Several years ago, a group of Junior High School teachers and I found ourselves
immersed in this situation. We decided to conceive and participate in a longitudinal
research program in order to devise mathematical tasks susceptible of offering
the students the occasion to engage in meaningful mathematical activities and, at
the same time, allowing us to investigate relevant ontogenetic aspects of the
emergence of symbolic algebraic thinking.
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The elaboration of mathematical activities to introduce algebra in school led us
to make explicit choices that are sustained by theoretical matters lying in the
crossroads of epistemological and pedagogical concerns. And underneath these
matters rests the long-standing venerable metaphysical question: “What is
algebra?” Is it a formal game? Is it a set of abstract structures? Is it a language? Is
it a tool with which to investigate natural phenomena?

In dealing with this question, our attempt was not really to answer the metaphysical
question (whose formulation in the third person singular already reveals an
ontological choice) but rather to look for theoretical orientations that could
conveniently meet the curricular demands. There are two major topics in the
Ontario Curriculum of mathematics in the introduction to algebra. These are
equations and patterns. I shall deal here with equations only2 The question to be
discussed here is hence: how to introduce equations?

Although there is no royal road to algebra, we decided to introduce equations in
the context of problem-solving activities —a context in which algebra appears as a
tool. As with any choice, it has its advantages and disadvantages. Before we discuss
the latter, let me specify what is meant here by algebra as a problem-solving tool.

THE THEORETICAL ORIENTATION
Algebra as a problem-solving tool

In our approach, the conceptualization of algebra as a problem-solving tool is to
be understood in the Aristotelian sense of tekhnz , that is, a reflective work on
certain objects in the course of which intellectual knowledge becomes dialectically
interwoven with the industrious actions on the objects’. More precisely, our
approach to algebra as a problem-solving tool means the development of an analytic
technique based on a conceptually complex kind of mathematical thinking relying
on the calculation of known and not-yet-known numbers or magnitudes that acquire
a meaning as they are handled in the pursuit of the goal of the activity.

This choice, nevertheless, has to overcome two important difficulties that are
constantly mentioned in didactic discussions and that Duval (in press) analyses
in depth in a recent article:

) The first one relates to the “translation” of the statement of the problem
into algebraic symbolism.

33
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) The second one concerns the symbolic calculations required to solve
the equation,

Duval argues that the difficulties in both cases are different. To transiate the state-
ment of problem from natural language into the symbolic language of algebra
requires a semiotic transformation of representations, something that he calls a
conversion. To solve the equation, different transformations from the previous
ones are needed. He calls these processing transformations.

As for conversion, Duval insists upon the difference between the linguistic dis-
cursive procedures and the syntactic ones proper to the symbolic algebraic lan-
guage. In a collective work (Groupe Math-Francais de 'IREM de Strasbourg,
1996), this difference accounts for difficulties encountered by students in tasks
where they had to translate word-problems into equations. Conversions are espe-
cially difficult for novice students to accomplish in those cases where expres-
sions in natural language cannot be translated directly into symbolic expressions
because of differences in the syntax of both systems —something that Duval (1995)
calls the problem of congruence/non-congruence (of statements) and for which I
had proposed the more complicated term of vectorial direction (Radford 1992).
Probably the best known example of non-congruence translation is the famous
problem of students and professors (see Rosnick and Clement 1980).

A viable pedagogical choice to introduce algebra from a problem-solving tool
perspective needs to take into account the aforementioned difficulties. In order to

" make an attempt to reduce the problems arising from the conversion between
semiotic systems (i.e. the problems of “translation”), a possibility is to have re-
course to word-problems that will not expose the students, unnecessarily from
the very beginning, to non-congruent situations and the subtleties of the complex
syntax of symbolic algebraic language.

There is still an important point concerning the conceptual development of alge-
bra that can help us refine the previous pedagogical option. Even if in terms of
the usual curricular demands our final point is symbolic algebra, this does not
entail that, in the first contact with algebra, we need to put the students in contact
with letters. Actually, symbolic algebra is a relatively recent invention. It dates
back to the 16* Century AD, while mathematical activity with unknown terms
goes back to at least the 16™ Century BC (see Radford 2001a, 1995, 1996). Hence
it may be interesting to start with a choice of representational semiotic systems
based on soft syntaxes and meanings and elementary word-problems aimed at
relieving the problem of conversion (a problem that can be addressed later, once
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the students have become acquainted with some essential algebraic concepts).

Regardless of the target semiotic system (TSS) to be chosen, the word-problem,
as Duval notices, already contains a designation of the unknown quantities in the
source semiotic system (i.e. natural language). To convert a word-problem into
one or more semiotic expressions in the TSS therefore demands identifying and
re-designating the unknown quantities and the relations between known and un-
known quantities (one of these relations, although not the only, being the equality
relation). At this point, a central cognitive problem s the articulation of the semiotic
expressions in the TSS and the meaning with which these expressions have to be
endowed in the process of their transformation in the solution of the equations.
Since the meaning of the signs of the TSS, resulting from the translation phase,
cannot be preserved throughout the successive transformations of semiotic ex-
pressions, the signs and these semiotic expressions have to acquire a new mean-
ing.

Along this line of thought, I want to suggest that, among the wide variety of
signs, from a didactic point of view, icons can be helpful transitional devices to
re-designate unknown quantities before a full formal treatment of symbols be-
comes possible for the students. True, icons have obvious limitations. For one
thing, it is not possible to write a compendium of the syntax of icons. But, for our
purposes, this may not be necessary, as it was not necessary for the Babylonian
scribes who wonderfully managed to solve, by iconic methods, second-degree
equations (see Radford 2001a; Radford & Guérette 2000). Let us further elabo-
rate these ideas in the next section in light of supplementary semiotic consider-
ations and the idea of algebra as fekhne.

ICONIC ALGEBRAIC THINKING

In the introductory activity to algebra that we elaborated, no letters were required.
We opted for an approach based on artefacts, that is, concrete objects out of which
the algebraic tekhne and the conceptualization of its theoretical objects arose.
Two kinds of artefacts were considered: envelopes and cards. They were taken as
signs in a Vygotskian sense (see Radford 1998). The cards were icon-signs re-
designing known quantities, while the envelopes were icon-signs re-designing
unknown quantities. This conceptualization of the unknown is, in fact, inspired
from the work of one of the more talented 14® Century Italian algebraists, Antonio
de Mazzinghi, who, to explain what the cosa is (i.e. the thing or the unknown)
used to say that the cosa is “a hidden quantity” (see Radford & Grenier 1996). A
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statement §, such as “one envelope and three hockey cards” or § , “two enve-
lopes and one hockey card” can be represented by or converted into iconic state-
ments using material envelopes and cards as follows:

&~ oono
A e B D

Iconic statements rely on a kind of elementary syntax based on juxtaposition of
terms (somewhat similar to the rules of Generative Grammars inspired by
Chomsky’s works and widely used in the field of Computer Sciences)_.

We can introduce a new sign into the iconic semiotic system to allow one to
express the equality between iconic statements like S; and S, the equality being
something that Duval (1995, p. 111 ff), following Aristotle, relates to one of the
apophantic functions of a language*. Such a sign can be any concrete mark (e.g. a
piece of paper, or a piece of paper having the traditional equal sign on it). The
resulting semiotic system constituted of two kinds of signs (“envelope-sign”, “card-
sign”) and a third sign for the two-place equality predicate along with a set of
syntactic rules for the formation of expressions (the ‘well-formed’ expressions)
and deduction rules indicating the passage from a predicate to another, constitute
what I want to term an elementary iconic symbolic language (EISL).

EISLs, as conceived here, are good enough to deal with some elementary word-
problems through algebra. Although an explicit list of rules of sign-use and
deduction could be provided, it is of no interest here. As said previously, the
interest of an EISL is the friendly environment it offers for non-expert users in
symbolic languages, which is the case of novice students stepping into the realm
of algebra’.

As we will see in the next section, because of the signifying nature of icons,
transformation and deduction of expressions (that is, inferences in Peirce’s sense)
allowed the students to elaborate, in a non complicated way, a mathematical
technique operating on known and unknown quantities and relying on perceptual
actions —a technique underpinned by what can consequently be called iconic
algebraic thinking.
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STEPPING INTO ALGEBRA

In this section, we shall discuss some aspects of the first two days in which two
classes of Grade 8 students were introduced to algebra. The goal of the first day
was to familiarize the students with the principles of the algebraic techniques
required to solve equations without using letters. The second day, the students
were asked to start using letters to write and solve equations.

The first day

The first day; the lesson was divided into three parts. In the first one, the teacher
discussed a word-problem and its solution with the class. This problem (as well
as those given to the students in the second part of the lesson) dealt with hockey
cards and envelopes. The teacher had envelopes and hdckey cards and, according
to the information given in the statement of the problem, placed them on the
blackboard. He divided the blackboard into two parts and referred to each part as
one of the sides of an equation. In the very beginning, to justify the actions on
artefacts to solve the problem, the teacher stretched out his arms and made a
quick reference to a two-plate scale. His explanation, however, focused on the
comparison of the two sides of the equation. In the second part, the students were
provided with a kit of envelopes and hockey cards and worked on a series of 6
problems according to a small-group structure (the small-groups were usually
comprised of 3 students). Then, the teacher conducted a general discussion to
compare the students’ solutions and enhance mathematical understanding. In what
follows, we shall present excerpts from one of the small-groups. The students
will be identified as Paul, Carole and Madeleine (their names have been changed
for deontological reasons). The spatial disposition of our group of students is
shown in Figure 1. They worked on two desks put together.

Paul

Carole

—»
Madeleine

Figure 1. Students’ spatial distribution
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The mathematical activity required them to work on concrete objects, to write the
answers on a sheet of paper and, in some cases, to write and explain their methods.
For each problem, a different student was in charge of recording the group’s
answer.

Here is the first problem of the students’ small-group activity:

Problem 1:
Paulette’s and Richard’s mother decides to give her children a
gift. She will give them envelopes containing hockey cards. In
order for the envelopes to be identical, she puts the same number
of hockey cards in each envelope.

Paulette already had 7 cards and her mother gives her 1 envelope.
Richard already had 2 cards and his mother gives him 2 envelopes.
Now, the 2 children have the same number of hockey cards.
How many cards are in each envelope?

Following the strategy showed by the teacher, the students formed an equation
with the concrete material. In this part, Paul and Madeleine were in charge of
using the concrete material and Carole was in charge of writing on the activity
sheet. They thought of Paul’s desk as a plane surface divided into two parts. On
one part, they placed 7 cards and 1 envelope, which corresponded to Paulette’s
cards and envelopes. On the other part, they placed 2 cards and 2 envelopes,
which corresponded to Richard’s share (see Figures 2 and 3)°. Here is an excerpt
of their dialogue:

1. Paul: Okay. ... What are the data, please? Oh. (He looks up at the
blackboard and sees the problem.) (See F igure 1 for the students’
spatial distribution.)

2. Carole: (looks at the paper and without raising her eyes answers
Paul’s question by saying) 7 cards ... 1 envelope. 5

3. Paul: (begins to construct Paulette’s situation. He arranges 7 cards

‘ on the left side of his desk all the while counting out loud) 1, 2, 3, 4,

5,6,7 ... Then 1 envelope? (ke places 1 envelope along with the 7
cards towards one of the corners of the desk; see F igure 2)



Algebra as Tekhng 39

[

O
oo
gon

Figure 2. Paul’s desk

4. Carole: 2 and 2 ...(meaning 2 cards and 2 envelopes to represent
Richard’s situation)

5. Madeleine: After this, this one has 2 (she puts her hand over the spot
on Paul’s desk where they are supposed to depict Richard’s situation.)
Right?

6. Paul: (counts aloud and places 2 cards) 2 .. .(then, addressing himself
to Carole, says) 2 envelopes, please. (Madeleine quickly takes 2
envelopes from among those on Carole’s desk and places them beside
the 2 cards representing Richard’s situation.) [...] (see Figure 3)

Richard’s =~ EB E’ [&——  Paulette’s

equational 0 Qg equational space
space O O o o
Iy

Figure 3. Students’ indicate the equality of the iconic expressions
through a space between the equational spaces.

So far, the students succeeded in the process of conversion between semiotic
systems. In this case, and due to didactic choices concerning the congruence
between the respective statements, the iconic predicate in Figure 3 is almost a
mirror of the statement of the word-problem. In itself, it may seem as an
unimportant step in the students’ undergoing mathematical actions. Nevertheless,
as Lacan noticed, mirroring marks the beginning of symbolic activity.

7. Paul: Okay (acting very quickly, while Madeleine moves the concrete
material to separate even further the equational space between
Richard and Paulette that we have indicated by a dotted line in Figure
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3). So, this (he takes one of Paulette’s cards), this (takes one of Richard's

10.

11.

cards) comes out (he holds up the 2 cards for a moment, one in each
hand, so that the other students can see, then he moves them onto
Carole’s desk). So, ... (inaudible) this one.

Madeleine: (While Paul is still speaking, takes one card from Paulette
and one card from Richard and says) This, this ...

Paul: (begins to act when Madeleine is still taking the cards and
says) This, this comes out ... -

Carole: No. ... (then almost simultaneously shows her understanding
of the action of her classmates regarding the subtraction of cards)

Paul: (takes the two cards that Madeleine had taken and still has in
her hands, joins them to those that he had taken in Line 7, places
them on Carole’s desk and concludes, looking down at the desk) So,
there are 5 [cards] in each envelope. (see Figure 4)

0O
OO

Figure 4. Final solution.

As we can see in this episode (that lasted 29 seconds) the students did not find
any difficulty in solving the problem. They operated on the unknown (the envelope)
and on the constant terms (the cards).

Successive transformations of the initial iconic equation found their meaning in a
perceptual semiosis (Radford, 2001b), ensured here by the iconic nature of the
object-signs. This is manifested in a clear predominance of visualization and of
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the concrete actions to remove objects over what the students say. That is, glances
and gestures become the primordial regulatory principle of the activity. Speech
functions as a background regulatory principle (in fact, the students utter relatively
few word in lines 1 to 11. This amount increases dramatically in the next episodes).

The second and third problems were similar to the previous one. Their goal was
to familiarize the students with the algebraic problem-solving technique. They
did not find any difficulty in solving them. In problem 4, the students were asked
to explain the steps that have to be followed to solve an equation. The didactic
reason for including this problem is related to our theoretical framework and its
conceptualization of language as a means of objectification (Radford, 2000b). In
fact, we consider that there is an important difference between doing something
and saying how to do it. While doing something relies -on a kind of social
understanding in which coordinated perception plays a fundamental role (the
students may use deictic terms such as “this”, “that”, etc. to direct the others’
attention to something; they may also coordinate glances or point to something
with a finger), in saying how to do it we enter into a different conceptual realm.
Glances and gestures are no longer enough. The written words of language become
a new sensation organ, so to speak, that, in contrast to ephemeral pointing and
uttered words, endow objects with a permanent status.

Problem 4:

1. Carole: (reads the question) Explain in your own words the steps
that must be followed to solve an equation.

2. Madeleine: (reads the guestion) [...] Well, you have to take them
away equally. Like, when you take away 1 card, you have to take
away the other. ... :

Carole: Yes, but ... but, we have to say it at the beginning ...
Paul: What you do on one side, you do on the other.
Carole: Yes. You always do to one side what you do to the other.

Madeleine: Uh huh. (she begins to write)

N e

Carole: If you take away 1, you take away 1. If you take away 2,
you take away 2 ... Then, what you ...

8. Madeleine: (saying what she writes) Do the same thing on both
sides. "

41
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10.
11.
12.
13.
14.
15.

16.

17.
18.

19.

20.

21.

Carole: On the 2 sides ... On each ...

Madeleine: Then, if ... (inaudible) on one side ...

Paul: You take away the cards on the other side.

Madeleine: Okay. So, after that, what’s left is ...

Paul: How many cards ... 7

Carole: (interrupts) And, when you can’t take away any more ...

Madeleine: (begins to write again) That’s your answer ... (saying
what she is writing) when you can’t ... anymore ...

Carole: Sometimes you have to divide ... And then after that,
you have to say that.

Paul: Or multiply, or add, or ...

Carole: (interrupts) No. Just divide the number of cards by the
number of envelopes.

Paul: I don’t think you’d add, though. (Carole and Paul examine
Madeleine who is busy writing on the paper.)

Madeleine: That’s your answer? (Carole gestures ‘yes’ with her
head and Madeleine begins writing again.) [...] The amount in
each ... the amount in each envelope (Carole gestures ‘yes’ with
her head again) ... or the answer. (Madeleine continues to write
on the sheet of paper.)

Carole: Okay. Then, there, if you. have many cards and envelopes,
you have to divide. (Madeleine finishes writing.)

The students’ final explanation is as follows:

You always have to do the same thing on both sides. For example,
if you take away one card on (one) side you have to take away
one card from the other side too. When you can no longer take
away any cards or envelopes that’s the answer. If you have many
cards and envelopes, you have to divide.

The dialogue and the students’ text reveal the dialectical relationship between
conceptual knowledge and the reflective work on objects. Thus, lines 16 and 17
make provisions for different possible situations; line 18 is a firm conclusion
sustained by the students’ previous experiences that leads, in line 19, to a
reassessment of line 17. The text includes general statements that are exemplified
with concrete cases and hypothetical situations and has the following structure:
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General statement. Example. Indicative statement. Hypothetical situation.

In problem 5, the students were asked to invent a word-problem having as the
answer: in one envelope there are three cards. Paul was in charge of writing.

Here is an excerpt of the students’ dialogue:

1. Carole: Okay. Well, we could start like this. (She takes one envelope
and says) 1 envelope, 3 cards are left. (She places 1 envelope and
3 cards in front of her. See Figure 5). Okay. So, there we can add
like ... (adds 1 envelope on each side: See Figure 6).

000 N~ god

]

Figure 5 Figure 6

2. Paul: (interrupting) 2 envelopes like this.

3. Carole: No, more. (She re-arranges the objects and adds 1 more
envelope on each side: see Figure 7. Then she adds 3 cards on
one the sides of the emerging equation and says) 1,2, 3. (Then
places 3 cards on the other side of the equation containing the 3
initial cards and says) 3 have to be left over (see Figure §).
We’ll put lots on both sides. '

4. Madeleine: Yes, okay.

tjitj DDDE

] | "

Figure 7
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@Q OO O A
— ] ooo
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Figure 8
Carole: Really lots. (She adds 3 more cards on both sides,
counting aloud) 1,2,3 ... 4,5, 6.

Carole: ... (continues)'where do we write our problem? ... Well,
how did they write it there? (She turns the page to the preceding
problems) Like, we’ll start the same way.

Although the final iconic statement is still under construction, at this point, the
students will start a conversion process: they will translate the iconic statement
into a statement in natural language:

7.
8.
9.

10.

11.
12.
13.

Paul: The mother of ...
Carole: The mother of [Carole] and ... Madeleine ...

Paul: ... decides to give a gift to her children. (He continues to
write)

Madeleine: How many are there? (She begins to count the cards
on one side) 1,2,3,4,5,...,6,7, ...

Carole: (interrupting) There are 3 left.
Madeleine: ... (continues) 8, 9. There are 9.

Carole: (counts the cards from the second package) 6 [cards].
(She gathers 3 and 2 envelopes and says) 3, 2. (The students
have the concrete equation shown in Figure 9)

@tjl I I g
Z] [ I

0o RN
DO Q

Figure 9. The concrete equation elaborated by the
students
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14. Madeleine: Well, no, she gives, um ...

15.  Paul: (turns the sheet and shows a previous problem) Here, it
says, “She gives them envelopes containing Hockey cards.”

16.  Carole: Okay. ... envelopes containing ...(Paul continues writing
then examines the problem on the previous page)

17. Madeleine: Okay. For Carole ... she gives ... [...] Yes. Carole
already had ... (examines the cards and envelopes in front of
Carole) [...] 9 [cards], then her mother gives her (shows the
envelopes in one package) 2 envelopes. (Carole takes the package:
and examines the problem.)

18.  Paul: Yes, then she gave ...

19. Carole: No. Yes. Well, how many envelopes does my mother
give me?

20. Madeleine: 2.

21.  Carole: 2 envelopes. So, you have to write, eh, (shows a place
on the sheet). Carole already had ... 9 cards and her mother
gave her 2 envelopes.

22.  Madeleine: Yes. (Carole gives the stack of pages back to Paul.)

23. Paul: Okay. (He begins to write)

24.  Madeleine: Then, after this, eh, Madeleine already had 6 cards
and her mother gives her 3 envelopes. (Paul continues to write.)

25.  Paul: Then, after this, (examines the previous page) we’ll write,
Madeleine already had 6 cards ... Wait a minute! Here (points to
a place on the sheet) How many are there ...

26.  Madeleine: ... cards in each envelope. (Paul continues to write.)
27.  Carole: What about, now the two children have the same number?
28. Madeleine: You don’t need to put that.

29. Carole: Yes. ... That’s how they’re going to find it out because
they have exactly the same thing (looks at Paul who is writing)

No! Paul, Paul! You have to write “Now, the 2 children have the
same number” (Paul is inaudible.)

30. Carole: Because it’s important to know this for your problem.
You have to have it.

31.  Paul: So,I write this before this. (shows a place on the sheet of
paper)
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32. Carole: Yes. So, you just have to choose this. (Paul scoffs at
something and continues to write.)

33. Paul: Okay.

34. Carole: Now, ...[...] The 2 children ... the 2 children ... have
the same number of cards ... (inaudible) have the same number
of cards. [...]

35. Carole: In each envelope. (Paul continues to write.)
36. Madeleine: That works. Right?

37. Carole: Yes. (Madeleine begins to remove the cards and the
envelopes from each side to verify if the problem will give the
right solution. Carole helps her do this. Madeleine counts the
cards that she is taking away and says: “Yes, this works” .)

The final text reads as follows:

Madeleine’s and Carole’s mother decides to give her children a
gift. She will give them envelopes containing hockey cards.
Carole already had 9 cards and her mother gives her 2 envelopes.
Madeleine already had 6 cards and her mother gives her 3
envelopes.

Now the 2 children have the same number of cards. How many
cards are in each envelopes (sic!)?

Lines 27 to 30 show the students’ evolving understanding of one of the more
important aspects of the algebraic concept of equality. If the statement of the
problem does not say that the children have the same amount of hockey cards,
‘then, Carole argues, it will be impossible to solve the problem. In the beginning,
Madeleine thinks that this is not important. However, as a result of the discussion,
she realizes that Carole is right.

Although the first-day mathematical activity involved two more problems than
those discussed previously, we will not discuss them here. Let us only mention
that Problems 6 and 7 were aimed at bringing the students to tackle one problem
with an infinity of solutions and one problem with no solution, respectively.” The
solution to these two problems led the students to become aware of something -
that they had left implicit in the previous discussions, namely, that the envelopes
have to contain the same number of hockey-cards.
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The second day: Symbolic algebraic thinking

On the second day, the students were asked to solve the same problems that they
had encountered the previous day. This time, however, instead of using concrete
artefacts, they were required to use letters and numbers. The teacher solved
Problem 1. We will analyze here the students’ solution to Problem 2.

Here is the statement of the problem:
Mario’s and Chantal’s mother decides to give her children a gift.
She will give them envelopes containing hockey cards. In order
for the envelopes to be identical, she puts the same number of
hockey cards in each envelope.

Mario already had 12 cards and his mother gives him 1 envelope.
Chantal already had 3 cards and her mother gives her 4 envelopes.
Chantal has the same number of hockey cards as Mario.

How many cards are in each envelope?

They proceeded as follows:
1. Madeleine: Okay. The number 2? (she begins to write on the
paper)
2. Carole: Yes. ... (she looks at the paper in front of her) 12 cards,
1 envelope.

Madeleine: Okay. So, ... (she begins writing again)
Carole: 12... 12 plus le.

Paul: 12 plus ... How many envelopes?

Madeleine: 12 cards then how many envelopes?
Carole: One. '

Paul: 12 plus le.

Carole: Equals ... 3 plus 4e. (They arrive at the following
equation: 12+le =3 +4 e)

o o oo I &

The students wrote the equation, following the statement of the problem. In doing
so, they capitalized on their previous mathematical experience. For instance, the
juxtaposition syntax of the EISL is transformed into something new: juxtaposition
gives rise to new signs. Thus, the addition sign “+”, which was not part of the
EISL language, appears in the symbolic expression. Furthermore, the empty space
in front of the equational space of the compared iconic expressions (see Figure 3)
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now becomes the traditional equal sign “=". Last, but not least, the letter “e”
functions as an abbreviation of the object “envelope”. In a certain sense, in the re-
designation of unknown quantities, the letter is still an icon. The difference is
that now the letter is endowed with the perceptual meanings that were originally
derived from the EISL (problems 1 to 3) and were later objectified in speech
(problem 4). We have, indeed, the interplay of different semiotic systems where a
reference to a same object is made (although obviously the mode of denotation is
not the same):
a. The written language where the word envelope appears (hence envelope,)
b. The concrete sign-object ‘envelope’ (hence envelope,)
c. The uttered word envelope (hence envelope,)
d.

The letter “e”.

Itis in the interplay of these semiotic systems that the embryonic symbolic méaning
will be expanded further in the following lines, where the students will tackle the
symbolic equation that has now reached a linear form. Here is the dialogue:

10.  Madeleine: Okay. So,it’s ... how many cards did we take away?
11.  Carole: 3.

12. Madeleine: Right (she goes back to writing) minus 3 (she writes
at the same time as she says 127°)

13.  Paul: minus 3.

14.  Carole: (ar the same time) minus 3.

15. Madeleine: Okay. So, this, this gives ...

16.  Carole: 9.

17. Madeleine: 9 ...

18.  Carole: plus one e.

19. Madeleine: Equals ...

20.  Carole: 4e. (They arrive at the following equation:9+1le =4e )

Even though the emerging abstract thinking is a sémiotic expression of iconic
algebraic thinking, in the new symbolic layer, the students do not reproduce each
of the concrete actions. We saw that the students took one card after the other
(one card at a time on each side of the concrete equation). Here they subtract
three cards at the same time. Symbolic thinking leads to a condensation and a re-
organization of previously temporal sequenced actions. There is a fundamental
difference between the narrative of concrete iconic actions and the symbolic ones.




Algebra as Tekhne

At this point of the problem-solving process, the symbolic equation has been
simplified. Now the students will operate on the unknown. They will proceed to
subtract unknown terms on both sides of the equation:

21.
22.
23.

24,
23,
26.
2.

28.
i 29.
] 30.
31.
32.
33,

34.
35.
36.
37.

Carole: After this, take away ...
Madeleine: (interrupting) 1 envelope.

Carole: ... (continues) 1. (Madeleine continues writing on the
paper. She writes :9+ le® =de™)

Paul: Equals 9.

Madeleine: ... 9. .

Paul: Equals ... 3. ,

Madeleine: (at the same time) 3. (They arrive at the following
equation: 9=3e)

Paul: So, it’s like 3 cardsin 1 envelope.

Madeleine: Oh, yes. So there ...

Paul: You divide.

Carole: Yes, but is it correct?

Paul: So, you go 9 divided by 3.

Madeleine: But, is it correct like this, eh? (They experience
difficulty in symbolically expressing the action of dividing; they
write:9+3e =)

Carole: Yes.

Paul: Yes, but, you have to divide there.

Carole: (shakes her head) No.

Paul: Are you sure? (Finally, they write: 3=le)

Their written work was the following:

\8’3&:. = 3'3-‘1‘(,
q4lC= et

9 =3¢
q ;3. B>3¢)
3z=le

Figure 10. The students’ symbolic equation and its solution
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As can be seen, subtractive actions were symbolized with small characters in a
quasi-exponential format adjacent to the sign on which the action was carried
out. These actions were accompanied by speech. For instance, lines 21 and 22
show the regulatory function of speech and its result in line 23. Although, as
mentioned previously, the students chose to use a letter that was abbreviating the
word that names the object (in this case, the letter “e”” was an abbreviation of the
word “envelope” that designates the concrete object with which the students were
acting), the letter, bit by bit, started losing its contextual reference and by the end
of the two-days activity the students were already successfully dealing with direct
equations. ) -

It does not mean, however, that algebra was always easy for them. As a matter of
fact, coefficients were seen as ‘nombres nombrants’, that is, as numbers that
number the amount of unknown objects (one envelope, three envelopes, etc.)8. If
our model affords this conceptualization of coefficients, something different is
needed in order to provide meaning to, say, decimal or irrational coefficients.

SYNTHESIS AND CONCLUSION

In this paper, we presented an analysis of a group of Grade 8 students in their first
contact with algebraic equations. This first contact occurred in a mathematical
activity in which algebra was considered in the Aristotelian sense of fekhnz.
Paramount to this idea is that algebraic thinking arises in the stream of the students’
reflective work on certain objects as a technique that oscillates between manual
and intellectual endeavour where each one of these poles sheds light on the other.
The mathematical activity allowed the students to progressively enter into the
realm of algebraic symbolism. Instead of starting from the highly complex symbolic
language of contemporary algebra and to consider equations as objects per se, we
proposed a more friendly environment: a concrete elementary iconic symbolic
system (EISL) having an elementary perceptual syntax. This syntax is not
empowered with all the capabilities of an “analytic” or a formal syntax. Hence, a
statement comprised of a card and an envelope is the same, regardless if the card
is above or below the envelope. EISL syntax is less rigid than the formal ones.
This is precisely one of its potentials, from a didactic point of view®.

EISL soft syntax allowed the students to accomplish the translation of elementary
word-problems into an iconic statement and to suitably transform these statements
in order to reach the solution. These iconic statements form an iconic text that, in
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the end, appears as a didactic device reducing the gap between the statement of
the problem in natural language and a formal symbolic treatment of equations.
The didactic goal was not to remove the gap (which is, I believe, an impossible
task). The goal was to provide the students with an intermediary semiotic system
from where to derive certain meanings to be used later in the semiotic system of
symbolic algebra.

EISLs rely on a perceptual semiosis in which algebraic meanings arise in direct
contact with signifying features of the human body and its cultural context. In
perceptual semiosis. the individual’s senses are oriented to the inspection of the
objects and meanings arise in the contact between senses and objects. As Merleau-
Ponty (1964, p. 67) says,

We must [...] recognize that what is designated by the terms “glance”,
“hand”, and in general “body” is a system of systems devoted to the
inspection of a world capable of leaping over distances, piercing the
perceptual feature, and outlining hollows and reliefs, distances and
deviations —a meaning—in the inconceivable flatness of being.

To inspect the world, however, the senses of the human body are not enough.
Between body and object, culture interposes a wide range of artefacts that
anthropologists and cultural psychologists call prostheses, that s, artificial objects
that make the body (and, along with it, the mind) go beyond the skin —Bateson’s
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example of the blind man and his cane is probably the best known example of this -

kind (Bateson, 1973; for a more detailed discussion within cultural psychology
see Cole 1996; for a discussion from the perspective of the learning of algebra
see Radford 1999b). Envelopes and cards, in our teaching sequence, were artefacts
that functioned as prostheses to touch the noumenal mathematical objects through
actions driven by perceptual meaning.

- Perceptual meaning, whose texture is made from the threads of voices, glances,
and touches, later became transformed into a new meaning that relied more heavily
on writing and out of which symbolic expressions and equations arose.

The passage from perceptual to abstract meaning was ensured by the interplay of
different semiotic systems. As the lines of the dialogue shown in Section 3.2
suggest, the meaning of what they were progressively writing in the semiotic
system of symbolic algebra, in fact, relied upon what they were saying, seeing,
and the previous experience of the EISL (see Figure 11).




52

L. Radford
Envelope, Envelope,
Written language o EISL
Y Y
A 4 v
e Envelope;
Symbols o Speech

Figure 11. Interplay between different semiotic
systems in the production and solution of an
equation

By and by, as the students entered further into the realm of symbolic algebra,
speech became less and less present. Sometimes slowly, sometimes quickly, the
pencil moved across the paper, line after line, up to the point where the solutions
were found. The signs, that the solitary hand holding the pencil produced, entered
into a kind of mute territory, occasionally interrupted by a whisper —the vestige of
the previous tumultuous social exchange that is now crystallized in the silent
letter.

(Footnotes)

L This article is part of a research program funded by the Social Sciences and

Humanities Research Council of Canada and Laurentian University Research
Funds.

Some of our classroom-based researcﬁ on patterns can be found in Radford 1999a,
1999b, 2000a, 2000b.

For a discussion of tekhné as a relation between conceptual knowledge and
concrete labor, see Mondolfo (1954).
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Statements S and S, have a referential nature in that they tell us something about
the objects of the universe of discourse without making any judgment. To go beyond
mere reference, a language has to add new possibilities accounting for acts of
expressions that have a logic value (i.e. trueness), an epistemic value (certainty) or
a social value (see Duval, op. cit. p. 112). Equality, I want to submit, is not restricted
to a logic value. Depending on the specificities of the context, equality may have a
logical, a social or an epistemic function and even more than one of these at the
same time.

Formal languages can also have an iconic component. Actually, Peirce considered
that mathematical formulas were icons: “an algebraic formula is an’icon, réndered
such by the rules of commutation, association, and distribution of the symbols.”
(Peirce, 1955, p. 105). _

Of course, in symbolic terms, the problem would correspond to the equation
X+T7=2x+2. '

In symbolic terms, the problems can be translated as: 2x+2=2x+2 and 2x+2=2x+3,
respectively. I am analyzing the students problem-solving methods and
conceptualizations in a manuscript in progress.

See, for instance, the last line in Figure 10. The symbolic expression “le” still
resounds the echo of the utterance “one envelope” of line 28.

In order to make more tangible the contribution of our approach, it is worthwhile
to mention, at this point of our discussion, that manipulatives have been used for
many years in the teaching of algebra (for example, in terms of concrete or
representational two-plate-scale models, see, e.g., Filloy & Rojano, 1985. We do
not claim any originality in using them. What is new is the cultural-semiotic analysis
that we are doing of the students actions and the conceptual orientation of
manipulatives in our teaching lessons resulting from our theoretical framework. If,
as any cultural artifact, two-plate-scales are neither good nor bad in themselves ,
our results, nevertheless, point to a relatively low pertinence of them for the learning
of algebra. Thus, the students dialogues show that scales are actually of little (if
any) use in their reasoning. What is important is the equational space (something
- similar to the phyéical counting-board of Chinese mathematics), which becomes
the arena of concrete actions. These remarks then converge to Pirie and Martin’s
observations concerning the irrelevance of scale models (Pirie and Martin, 1997).
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