ARITHMETICS
AND ALGEBRA
EDUCATION

Searching for
the future

NATATASATACAEATRTAV AN AV AT AT RFAWAVAVAVRUR Y RO AT)

%z;s%i%;

B2
3
s ’Rt;

T
=5

X

_

-
‘) N
)

= 0
¥ : ;%%: b
=53

o

e od)
)
o’
=
%

&
!!!!!
.

g,
e

Nl Nl Nl Nl Nl i il Nl NP il Nl NP sV AN

Edited by

Joaquim Giménez
Romulo Campos Lins
& Bernardo Gémez




Copyright ©1996 by Computer Engeniering Department

Universitat Rovira i Virgili ,
All gghts reserved. No part of this book may be
r uced in any form, by photostat, microform,

ieval system, or ana‘eother means, without the prior
written permission of the publisher.
ter -

Universitat Kovira i Virgili

Ctra Salou s/n

43007 Tarragona. Spain

.

© The authors of each chapter
Printed b mtma Asturias

Principe de ias 26 . Barcelona
ISBN - 84- 605-5321-3

D.L. - B- 30.501-96

Printed in Catalonia. Spain

Juny 1996




An Historical Incursion into the Hidden
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Abstract

Often, the development of mathematical concepts is merely seen as reification
processes (i.e. processes of abstraction andfor generalization) with little or any
relationship to sociocultural factors. Through a case study taken from history —that of
the rise of the algebraic concept of equation— we shall attempt to show that
mathematical reification processes do not happen in abstract spheres reserved for the
mind only but are encompassed by sociocultural processes. Our work makes it
possible to see that the rise of the algebraic concept of equation was historically related
to (i) the development of writing and (ii) to socially elaborated forms of mathematical
explanation. Two different stages of the development of equations can be detected: (i)
equations as heuristic tools and (ii) equations as genuine mathematical algebraic
objects. The transition from one stage to the other is discussed in terms of the factors
that, in the 15th and 16th centuries, led to the elaboration of arbitrary signs
designating the unknown and its powers. Some experimental data about the
children’s acquisition of the concept of equation will be discussed through our
historico-epistemological results. '

1. Introduction

Epistemology, as it is usually understood, deals with the study of knowledge.
From an educational point of view, some of the most important

3 This article is gart of a research program sgf‘ﬁyrted by a grant from FCAR No.
95ER0716 (Québec) and the Research Funds urentian Unaversity (Ontario).
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epistemological problems are those focused on the comprehension of the
genesis and development of knowledge. The ways in which these questions
may be tackled depend upon some basic assumptions about knowledge itself.
In the case of mathematics, it may be correct to say that most of the current
research programs follow a constructivist point of view. Even though it is
often taken for granted that constructivism provides some room to consider
the social aspects of knowledge, these aspects remain, in most cases, a
complementary axis to the supposedly main axis —that in which the
individual ultimately engages itself in his or her most private intellectual
intimacy in order to construct his or her knowledge. The resulting scenario
gives us a view of mathematical knowledge as being an essentially dominant
socioculturally-free human activity (Radford, 1996a, 1996c). Consequently,
the rather few educational studies that scrutinize the history of mathematics
for epistemological purposes pay little —if any- attention to the sociocultural
factors4. However, a closer look at the sociocultural contexts in which
mathematics develop unveils interesting facts that can shed some light on the
comprehension of mathematical knowledge —facts which cannot be
understood within the individual sphere only.

In this paper we want to deal briefly with the algebraic concept of equation.
The classical historical account consists in seeing how clumsy past efforts
developed throughout time until they reached our modern concept of
equation. One assumes the hypothesis that, for logical necessities, ancient
mathematical concepts had to reify in order to attain the perfection of our
modern concepts. Studying the concept of equation, we shall attempt to
show, through three historical episodes, that reification processes are
intimately linked to sociocultural reasons.

2. The Ancient Near-East

It is interesting to note that, while equations play a central role in our modern
mathematics curricula, equations (considered as genuine mathematical
objects) appeared very late in history. In fact, algebra emerged as an
intellectual activity centered around solving puzzles -more specifically, non-
practical problems. In the case of Mesopotamia, this activity was carried out

2 The primacy of the mind over its milieu has been recently challenged by several
scholars (e.g. Harré and Gillet, 1994; Wertsch, 1991). Lerman (1996};, in an
enlightening work, ar%ées that the insertion of sociocultural factors to the radical
constructivism cannot be done without introducing contradictions in the account of

the development of knowledge.
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in schools or teaching centers called "tablet-houses" where the dub-sar or
"tablet-writers", that is, the scribes, were trained to read and write in order to
primarily keep track of commercial transactions and to draw up official
notarial documents (e.g. contracts, letters, sales, rentals, adoption; see
Hoyrup, 1991; Radford, 1996b). As Heyrup pointed out (op. cit.), the reason
underpining the rise and spreading of such riddles from which algebra
emerged was a social one linked directly to the need to prove intellectual
virtuosity.

The way in which mathematics (and particularly algebra) was practiced was
deeply and determinately shaped by the social structure of the time —an
autocratic society centered around the king (for a more detailed account, see
Radford, 1996b). Many tablets show different contracts and oaths that people
at the service of the Palace had to sign in order to ensure loyalty as well as
honesty and correctness in the handling of the royal goods. On the eve of a
possible invasion, all the kingdom could be requested to sign a loyalty oath.
The contract-tablets reveal the complete alienation of the servant and his or
her submission to the king, who, in the case of the Palace's employees,
controlled all the contact that they could have with the exterior (see Durand,
1991). The autocratic king-servant relationship was a general scheme that we
find recurrently in the different social levels. Some historical evidence
suggests that this scheme underlaid the teaching model of the scribes’ houses
(Radford, 1996b). Within this context, it is not surprising then that the
mathematical tablets contain little information about the problem-solving
procedures followed by the ancient scribes. Although there were clear
technical writing limitations imposed by the small clay tablet (a constraint
that is evident in the official reports that the diplomats had to address to their
king), the written language used for educational purposes —a language that
operated as a complementary tool to the spoken language- focused on the
procedural aspect of the problem-solving tasks. Generally, in the tablets you
are told what to do without being told why. This does not mean that the
scribes’ procedures were found at random, as it has been often suggested, nor
that the scribes had at their disposal a hidden algebraic language. Hoyrup's
reconstruction of Babylonian mathematics suggests the scribes' utilization of
geometrical drawings as auxiliary tools to guide the actions needed to solve
many problems (Hoyrup, 1990). In all likelihood, the whole solution of
mathematical problems was mainly exposed orally, relying heavily on the
scribe’s memory. Very often, on the tablet containing the problem-solving
procedure of a mathematical problem, after some calculations have been
made and giving as a result a certain number, for instance 30, we find the
explicit instruction: "30, that your head retains".

Contrary to the social role played by literacy in the Greek culture where
literacy was accessible to anybody wanting to learn to read and write (see
Pfeiffer, 1968) —even though such an access was evidently more difficult for
slaves-, literacy in Mesopotamia was reserved for a small élite.
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The "explanation” that a written mathematical text may convey was hence
restricted to the core of the problem-solving procedure -a choice very
coherent with the general autocratic scheme mentioned above. The search for
scientific texts containing a more complete "explanation” was a later
sociccultural phenomenon that ran parallel with the social opening of
literacy: in contrast to the post-Pythagoreans who were influenced, without a
doubt, by the intellectual activity surrounding the work of the emerging
sophists in the fifth century and were engaged in the production of writting
works, Mesopotamian mathematical scribal texts did not reach an
autonomous life as did Greek "books".

In this context, it seems possible to understand that equations did not appear
in Mesopotamia as an explicit symbolic written equality between quantities.
The unknowns were referred to by their own names: for instance, the length,
the width, the area and so on of a rectangle or the weight of a stone. Let us
consider here problem 1 of a tablet conserved at the British Museum,
identified as BM 13901. The statement of the problem, which seeks to find the
length of the side of a square, is the following:

The surface and the square-line I have accumulated: 3/4.

The solution, as it appears in the tablet, is the following:

1 the projection you put down. The half of 1 you break, 1/2 and
1/2 you make span [a rectangle, here a square], 1/4 to 3/4 you
append: 1, makes 1 equilateral. 1/2 which you made span you
tear out inside 1: 1/2 the square-line. (Hoyrup, 1986, p. 450)

According to Heyrup, the solution is underlying by a geometrical
configuration upon which the oral explanation was based.

The scribe thinks of an actual square (fig. 1) which together with its side
makes up 3/4. The side is seen as provided with a canonical projection that
forms, along with the side, a rectangle (fig. 1); the quantity 3/4 refers then to
the total area of fig. 1. Then the scribe cuts the width 1 into two parts and
transfers the right side to the bottom of the original square.

Now the scribe completes a big square by adding a small square whose side is
1/2. The total area is the 34 (that is, the area of the first figure) plus 1/4 (that
is, the area of the added small square). It gives 1. The side of the big square
can now be calculated: that gives 1; now the scribe subtracts 1/2 from 1, he
gets 1/2: this is the side of the original square.
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Our question is: where is the equation? In fact, there is not an explicit
equation. In contrast, the problem-solving procedure is based upon: (i) an
implicit principle of conservation of areas that we may express by saying that
"parts of a figure may be cut and translated without altering the area” and (ii)
a double expression of the area: (iig) first the area is given by a known
quantity —in this problem the total area, A, of the final square is 1, and (if}) a
relational formula linking the area of the square to its side —something that
we express in modern symbols as A= x2. Combining (iig) and (iib) the

scribe obtains the side, x, and then the side of the initial square. It is important
to note that while the reasoning allowing one to find that A=1 is essentially
iconic and, hence, based on perceptual properties of the geometrical figures,

the transitive step that leads to the deduction x? = 1 is achieved at an abstract
level. Following a semoitic distinction introduced by Frege, we may say that
the success of the solutions was based on the possibility of handling two
different senses of the area and merging them into a single meaning. This, 1
believe, is an important step in the development of symbolic thinking and a
necessary one for the rise of algebraic thinking.

3. Equations in Diophantus' Arithmetica.

There are some particular conceptual aspects that surface in the way in which
equations were historically handled. Nevertheless, this aspect is often ignored
or overlooked in traditional historical mathematical accounts, mainly because
the ancient equations are unfortunately seen through modern lenses.
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Let us discuss the case of Diophantus' Arithmetica —a monumental work very
likely intended to be used in some schools of Alexandria at the end of
Antiquity. As we mentioned earlier, the explicit rise of equations seems to
have beeng related to the development of writing and to the sociocultural
modes of expressing and transmitting mathematical contents. Although in the
Arithmetica, equations still constitute a heuristic tool without being considered
as mathematical objects per se, their explicitness is couched in the peculiar role
played by explanations in the Greek scientific style of thinking.

Inheriting from Egyptian and Babylonian traditions of mathematics,
Diophantus, as well as some of his Greek predecessors and contemporaries,
was interested in riddles about numbers. Thus, in his introduction to the
Arithmetica, he says:

"Knowing my most esteemed friend Dionysius, that you are
anxious to learn how to investigate problems in numbers, I have
tried, beginning from the foundations on which the science is
built up, to set forth to you the nature and power subsisting in
numbers.” (Heath, 1910, p. 129)

In all likelihood, Diophantus' main contribution was to create a theoretical
foundation for the ancient riddles about numbers in order to convert them
into a scientific domain. To do so, he classified numbers into categories
according to the eidos of numbers, that is, according to the form that they may
share: one such category was that of squares, another was that of cubes,
another was that of square-squares, etc., that is, the numbers that our modern

3

mbolism may awkwardly translate b xz, x°, x4, and so on (actuall
sy y y y y

Diophantus considered categories up to x®).

Most of the problems of the Arithmetica seek to find numbers verifying a
certain combination between the aforementioned categories of numbers. One
such example (problem 8, Book 2) is the following problem whose roots date
back to the Pythagoreans:

"To divide a given square number into two squares.”

Note that this problem is translated very poorly by the modern expression

X2+Y%= az, for Diophantus did not use two unknowns. In fact, while the
problem seeks two sought-after quantities, the problem-solving procedure
uses just one unknown -Diophantus calls this unknown the arithmos, i.e the
number, which refers to the number that the problem-solving procedure will
uncover and from which the sought-after quantities will be inferred (for our
distinction between sought-after quantities and unknowns, see Radford,
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1994). The emergence of several unknowns was a later invention (see Bednarz
et al. 1995).

Diophantus’ solution is as follows: he takes the case where the given square
number is 16.

"Then", he says, "let the first number be the square of a number.
Thus, the other number will be 16 units minus the square of the
number. Therefore 16 minus one square of the number must be
equal to a square. I form the square from any number of the
number minus as many units as there are in the side of 16. Let
us take the square of two of the numbers minus 4 units. This
square will be 4 squares of the number plus 16 units minus 16
of the numbers which is equal to 16 minus the square of the
number. Add to each of them the missing parts and subtract the
similar terms. We will have that 5 squares of the number is

equal to 16 of the numbers, hence the number is equal to 1% :
Thus, one of the numbers is 2°%; and the other will be 4/

The sum of both numers is %%, that is, 16." (See Ver Eeck,
1926, p. 54; Heath, 1910, p. 144-145)

There are two points to be stressed. First, the fact that there is not a specific
number for the unknown requires a special attention in order to understand
what number we are talking about in each step of the problem-solving
procedure. Secondly, the equation results from the fact that a same number is
expressed in two different ways. Whatever the expressions may look like,
they refer to the same object: the second sought-after quantity. We find here
the same phenomenon as in the case of Babylonian algebra, except that in
Diophantus’ case, the objects have gained a very important level of
abstraction. Indeed, although Diophantus’ categories of numbers have an
evident geometrical taste, they cannot be directly linked to any sensible object
beyond the cube (whereas the Babylonian scribes formulated most of their

problems in terms of rectangles, their area and sides®). The fact of being able
to consider and to name objects that do not have any perceptual relationship
to the sensible world is in complete hamony with Greek philosophical
thinking and reflects clearly the distinction between the mind and hand:
while the every-day arithmetical calculations were left to the slaves, the

SEven though there are some evidences that in some cases the geometrical objects
were thought of metaphorically, thereby showing an important step in the
abstraction process (see Hoyrup, 1994), most of the time the geometrical objects
remained concrete objects.
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intellectual class from the post-Ionian period confined itself to the elaboration
of abstract scientific and philosophical systems (see Restivo, 1992, pp. 10-17).

The previous remarks show, I believe, that the emergence of equations as
heuristico-algebraic objects was underlaid by the social meaning of writing as
well as a reification process through which quantities were thought of as
abstract numbers. Nevertheless, this reification process did not occur
independently of the social meaning of the mathematical speculations.
Indeed, the reification occurred intimately linked to the categorical distinction
between the sensible world and the world of ideas advocated by Parmenides
and followed by Plato (see Radford, 1996a) —a movement that led to a
reconstruction of the Greek counting-stones mathematicians’ results that were
later reformulated into a "scientific format" as we find them in the arithmetic
books of Euclid's Elements (see Leféevre, 1981).

4. From the Middle Ages to the Renaissance

The spread of commercial activity in the late Western Middle-Ages led
merchants and bankers to face new mathematical necessities —e.g. how to
quickly and accurately calculate the exchange of different currency as well as
the equivalence between domestic and foreign commercial products
measured in different metrological systems.

To fulfil these necessities, it was necessary to train people in the mathematical
calculations needed in business. This led to the rise of new educational
institutions called bothegas d’abaco that followed the same functioning format
as the bothegas d’arte (i.e. workshops of art in which painters and sculptors
were trained to satisfy the demands of the princes, the church and the class of
rich merchants).

Algebra was taught in those new commercial schools as an advanced topic
probably reserved for an élite group of students ~-among them, those who
wanted to become maestri d'abaco, that is, teachers of mathematics (Franci,
1988). Thus, once again, algebra served a social purpose. The specific shape
that algebra took at that time, as in the case of the arts, was intimately related
to its social role —that of allowing its practitioners to shine in their milieu in
order to capture students as well as public contracts and royal patronages.
Unlike the case of Diophantus, whose algebra was focused on solving
problems that reflect the supposedly deepest nature of numbers, the algebra
developed in the late Western Middle-Ages was centered on solving
numerical and geometrical riddles whose mastering reflected an intellectual
virtuosity welcomed within the dominant social and economical classes. In
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many aspects, the social sense of medieval algebra was much like the
Babylonian one.

The study of the particularities resulting of the scientific contact between
different cultures in the history and the mechanisms that allowed the cultures
in contact to draw and to adapt the foreign ideas is beyond the scope of this
short article. For our discussion, we shall limit ourselves to note that the
Italian algebra took over the main organization of Arabian algebra -an

organization in terms of equations6. This does not mean that there was a shift
in the main focus of algebra from word-problems to equations seen as
mathematical objects per se. Indeed, equations appeared because of a need to
organize and simplify the resolution of problems. As we mentioned
previously, the main focus was still that of solving word-problems and the
role of algebra was that of providing a very powerful tool with which to solve
them (see Radford, 1995).

An interesting point to recall now is the lack of algebraic symbols. During the
Middle-Ages, the resolution was done by writing, in extenso, all the steps of
the solution. In some cases abbreviations for main recurrent words were used,
resulting in a language that has been called syncopated —something merely
imposed by the mode of the production of mathematical texts before the
invention of printing. However, there was an historically important shift
when the abbreviations stopped to be functioning as confortable writing
devices and started functioning as a means to simplify the calculations.

The passage from word abbreviations to autonomous signs to represent the
unknown and its powers as well as the operation between known and
unknown numbers was not easily accomplished (see Radford and Grenier,
1996) and, once again, cannot be seen just as a logical reification process. In
fact, the emergence of algebraic signs ~something that happened within the
walls of a bothega d'abaco, was undoubtedly motivated by teaching reasons. As
Vygotsky (1981, p. 157) pointed out, "A sign is always originally a means used
for social purposes”.

6 In The Condensed Book on the Calculation of al-gabr and al-Muqabala, written in Bagdad
circa 830 B.C,, the author, Al-Khwarizmi, presents a classification of equations in 6

cases. In modern notations the cases are: (1) ax? = bx; (2)ax2 =c; Qbx=c;

(4 ax? +bx =c; (5) ax’+c =bx; 6)bx +c= ax? (see Hughes, ed., 1986, pp. 233-
34).
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From: Francesco Ghaligai’s Pratica d’Arithmetica, 1548. p. 95.
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(fig. 4)

Luca Pacioli, in his Summa de Arithmetica, Geometrica, Proportioni et
Proportionalita (1494) used a syncopated language to solve word-problems
witout being interested in equations. This was also the case of his master
Piero della Francesca —one of the mathematicians who proposed a symbolic
system to solve problems by algebra. For them, equations were still powerful
heuristic tools with which to solve word-problems. In his Practica
d'Arithmetica (1548), Francesco Ghaligai went a step further by delimiting two
semiotic spaces in the problem-solving procedure: (i) a rhetorical space
containing the statement of the problem and the syncopated problem-solving
procedure and (ii) a symbolic space in which the calculations are shown (fig. 4).
However, the content of his problems was not symbolic expressions but
riddles about numbers (e.g. To divide a number into three parts such that ...).
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Equations as genuine mathematical objects can already be found in Rafael
Bombelli's L’ Algebra (1572, p. 183 ff.) and Michael Stifel's Arithmetica Integra,
published in 1544 —a delightful didactic work inspired by Christoff Rudolff's
Behend vnnd Hubsch Rechnung durch die kunstreichen regeln Algebre so
gemeincklich die Coss genent werden (1525). In the Arithmetica Integra, the author
tackles problems like the following: 6x+6=12x-30. "First", he says, "subtract
from each part 6x, thus it remains 6 equal to 6x-30. I Transfer 30 and get 36
equal to 6x." (Stiefel, 1544, p. 232B) There are also problems dealing with
second degree equations. The important step that we can note in Stifel's work
does not mean, however, that algebra was no longer related to commercial
applications and solving riddles about numbers. There are, in the Arithmetica
Integra, many such problems (see p. 256 ff.).

5. A Concluding Remark

The previous discussion suggests that reification processes are encompassed
by sociocultural processes. Reification processes do not happen in abstract
spheres reserved for the mind only. The study of the development of
equations (and algebra in general) provides a neat example: equations have
always had a meaning shaped by the social structures in which they were
practiced. Of course, if we see the past from our modern mathematical point
of view and we confine ourselves to the narrow realm of mathematics, what
we see is but a distorted landscape. Mathematics, like any human activity,
needs to be relocated in its different sociocultural contexts. Doing so, we start
seeing past (and modern) events in a richer way, capable of providing us with
a deeper understanding of mathematical knowledge. In turn, this can enable
us to better understand the teaching and the learning of mathematics.
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