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In this paper, we present a teaching sequence whose pur-
pose is to lead the students to reinvent the formula that
solves the general quadratic equation. Our teaching se-
quence is centered on the resolution of geometrical prob-
lems related to rectangles using an elegant and visual
method developed by Babylonian scribes during the first
half of the second millenniumBCE. Our goal is achieved
through a progressive itinerary which starts with the use
of manipulatives and evolves through an investigative
problem-solving process that combines both numerical and
geometrical experiences. Instead of launching the students
into the modern algebraic symbolism from the start—
something that often discourages many of them— algebraic
symbols are only introduced at the end, after the students
have truly understood the geometric methods. The teaching
sequence has been successfully undertaken in some high
school classrooms.

1. The Babylonian Geometric Method

Before explaining the teaching sequence it is worthwhile
to mention briefly some of the features of the Babylonian
geometric method. The method to which we are referring
was identified by J. Høyrup who called itNaive Geome-
try.d In order to show the method, let us discuss one of
the simplest Babylonian problems, namely, problem 1 of a
tablet preserved at the British Museum and known as BM
13901.

The statement of the problem, which seeks to find the
length of the side of a square, is the following:

The surface and the square-line I have accumu-
lated:nb;.

As in most of the cases, the scribe states the problem
using a very concise formulation. He is referring to the
surface of a square, and the square-line means the side of
the square. Thus, the problem is to find the side of the
square, knowing that the sum of the area of the square and
the side is equal tonb;. The method of solution is not
fully explained in the text. Indeed, the text shows only a
list of instructions concerning a sequence of calculations
that allows one to get the answer.

The instructions, as they appear in the tablet, are the
following:

d the projection you put down. The half ofd you
break,db1 anddb1 you make span [a rectangle,
here a square],db; to nb; you append: 1, make
1 equilateral.db1 which you made span you tear
out insided: db1 the square-line. (Høyrup, 1986,
p. 450)
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Of course, the Babylonians should have had a method
on which the numerical calculations were based. For some
time it was believed that the Babylonians somehow knew
our formula to solve second-degree equations. However,
this interpretation has been abandoned because of the mul-
tiple intrinsic difficulties that it implies, one of them be-
ing the well known lack of algebraic symbols in Babylo-
nian mathematical texts and the related impossibility for
the Babylonians to handle complex symbolic calculations
without an explicit symbolic language (details in Radford
1996 and Radford in print).

Based on a philological and textual analysis of the
Babylonian texts, J. Høyrup suggested that the solution of
problems (such as the preceding one) was underlain by a
geometrical configuration upon which the oral explanation
was based. In the case of the previous problem, the scribe
thinks of an actual square (Fig. a). However, the side is
not seen as a simple side (Fig. b) but as a side provided
with a canonical projection that forms, along with the side,
a rectangle (Fig. c). The duality of the concept of side is
based on a metrological equality: the length of the side
and the area of the rectangle that it forms along with its
canonical projection have the same numerical value (see
Høyrup 1990a). Keeping this in mind and coming back
to problem 1, BM 13901, it appears that the quantitynb;

refers then to the total area of Fig. 1. Next, the scribe cuts
the width 1 into two parts and transfers the right side to
the bottom of the original square (see Fig. 2).

Now the scribe completes a big square by adding a
small square whose side isdb1 (Fig. 3). The total area is
the nb; (that is, the area of the first figure) plusdb; (that
is, the area of the added small square). It givesd. The side
of the big square can now be calculated: that givesd; now
the scribe subtractsdb1 from d, he getsdb1: this is the side
of the original square.

s

FIGURE a (square) FIGURE b (side)
length = s

FIGURE c (side with canonical projection)
area = s
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This is the same type of transformation that seems to
be the basis of the resolution of many problems found in
a medieval book, theLiber Mensurationumof Abû Bekr
(probably ninth century), whose Arabic manuscript was lost
and which we know of through a twelfth century translation
by Gerard of Cremona (ed. Busard, 1968). In fact, many
of these problems are formulated in terms similar to those
of the Naive Geometry.

Let us consider an excerpt from one of the problems
of theLiber Mensurationum(problem 41; Busard 1968, p.
95):

And if someone tells you: add the shorter side
and the area [of a rectangle] and the result was
54, and the shorter side plus 2 is equal to the
longer side, what is each side?

As in the case of Babylonian texts, the steps of the
resolution given in theLiber Mensurationumindicate the
operations between the numbers that one has to follow.1 In
all likelihood, the calculations are underlain by a sequence
of figures like figures 4 to 10 hereinafter. The initial rect-
angle is shown in Fig. 4. The shorter side,?, (placed at the
right of the figure) is provided with a projection equal to
d (Fig.5), so that the length of the side is equal to the area
of the projected rectangle, as in the case of the Babylonian
problem discussed above. Given thatr ) ? L 1, the base
‘r’ (bottom of Fig. 5) can be divided into two segments ‘?’
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and ‘1’ (see Fig. 6). Now two small rectangles are placed
inside the original rectangle, as shown in Fig. 7.

The next step is to divide into two the set of the three
equal rectangles (Fig. 8); one of these parts (that is, a rect-
angle and a half) is placed at the bottom of the remaining
figure. As a result of this transformation, we now have Fig.
9, which isalmosta square.

The key idea in the resolution of these types of prob-
lems (and which appears in an explicit manner in Al-
Khwarizmi’s Al-Jabr (ed. Hughes 1986)) is to complete
the current figure (Fig. 9) in order to get a square. The
completion of the square (Fig. 10) is achieved then by
adding in the right corner a small square whose area is
equal to

D
d
d

1

i1
) 1

d

;
. The final square then has an area

equal tox; L 1
d

;
) xE

d

;
, so that its side is

�
x;

d

;
) �

d

1
.

The shorter side,?, of the original rectangle is then equal
to �

d

1
� d

d

1
) E, so the longer side isM.

We are not going to discuss here the historical ar-
guments that support the reconstruction of the procedures
of resolution for problems such as the preceding one
in terms of theNaive Geometry(see Høyrup 1986 or
Høyrup 1990b). We shall limit ourselves to simply indi-
cating that the explicit appearance of these procedures in
Al-Khwarizmi’s work leaves no doubt that these proce-
dures were well-known in the ninth century in certain Ara-
bic milieus.

2. The Teaching Sequence

In this section we shall present the teaching sequence that
we have developed in order to introduce the students to
second degree equations and that culminates with the rein-
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vention of the formula to solve these equations. The se-
quence is divided into 5 parts (whose duration may vary
according to the students’ background).

For each part of the sequence:
(i) we give the indications of the different steps to follow

in the classroom;
(ii) we include an item calledparticular comments,

which, through concrete examples, intends to shed
some light on the issues of the teaching sequence ac-
cording to our classroom experience.

Part 1. The introduction to the Naive Geometry
In part 1, the students are presented with the following
problem:

What should the dimensions of a rectangle be
whose semi-perimeter is 20 and whose area is 96
square units?

Working in cooperative groups, the students are asked to try
to solve the problem using any method. After they complete
the task, the teacher, returning to the geometrical context
of the problem and using large cardboard figures on the
blackboard, shows them the technique ofNaive Geometry.

This can be done through the following explanation:
If you take a square whose side is 10, then its area is 100
(Fig.11). One must therefore cut out 4 square units of the
square whose side is 10 (Fig. 11) to obtain a figure whose
area is 96. This can be achieved (and that is the key idea
of the resolution) by cutting out of the big square a smaller
square whose side is 2 (see Fig. 12). In order to obtain a
rectangle one cuts the rectangle shown by the dotted line
in Fig. 13 and places it vertically on the right (Fig. 14).
The sought-after sides then measure 12 units and 8 units.
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Once the technique is presented, the teacher gives the
students other similar problems. In order to avoid a simple
repetition, the parameters of the problem (i.e., the area and
the semi-perimeter) may be chosen as follows: area of the
rectangle ) n( and semiperimeter) d1. Problems like
this are particular in that the area of the small square to
be removed (Fig. 12) is not a perfect square. This led the
students to reflect about theNaive Geometrytechnique on
a deeper level.

In order to help students achieve a better understand-
ing, the teacher asks them to bring a written description to
class the next day outlining the steps to follow to solve this
type of problem. They may be told that the written descrip-
tion or “message” should be clear enough to be understood
by any student of another class of the same grade.

Particular comments.
(1) The idea of asking the students to solve the prob-

lem 1 using any method is simply to get them ex-
ploring the problem. As expected, usually, they use a
trial-and-error method. Other students choose a rather
numerical-geometric method; they choose a square of
side equal to 10 (a solution motivated by the fact that
the number 10 is half of the semi-perimeter 20). A
less usual strategy is to take the square root of 96. In
the last two strategies, when they try to justify their
answer (sometimes at the request of the teacher), they
realize that it is incorrect. The teacher may then ask
for ideas about direct methods of solution (something
that excludes trial-and-error methods).

(2) The geometrical resolution of this problem, a problem
that can actually be found in a numerical formula-
tion in Diophantus’Arithmetica (c. 250 CE) (Book
1, problem 27), is far from evident to the students.
As we have quite often noticed, when we first show
the Naive Geometryapproach in the classroom, the
visual seductive geometrical particularity of the reso-
lution awakens a genuine interest among the students.

(3) In one of our sessions, when confronted with the prob-
lem of area) n( and semi-perimeter) d1, one group
of students started assuming, according to the tech-
nique, that the sides were each equal toE (which meets
the requirement of semi- perimeter) d1). Given that
the area of this square is equal tonE, they realized
that they needed to take awayE square units. In order
to avoid irrationals, they cut out a rectangle whose
sides were equal to1 and n. Then they realized that
in doing so it is not possible to end with a rectangle,
as required by the statement of the problem. Fig.15b
shows the non-rectangular geometric object to which
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FIGURE 15

one is led when one takes away a1
n rectangle (Fig. 15a)
instead of a square whose sides are equal to

$
E). Then,

they became aware that a square of area equal toE has to
be removed and that they had to take away a side of length
equal to

$
E.

Part 2.
This part begins with a discussion of the messages contain-
ing all the steps required in the resolution of the problems
seen in part 1. Working in cooperative groups, the students
have to discuss and come to an agreement about the points
which could cause a conflict or could give way to an im-
provement. When all the group members are in agreement,
the teacher can choose one student of each cooperative
group to present the work to the other groups. This allows
certain students to better understand. Following this, the
students are asked toposeproblems themselves with the
following restriction: the sides of the sought-after rectangle
have to be expressed in whole numbers; then, as a second
exercise, the sides of the sought-after rectangle do not have
to be expressed in whole numbers. The students may even
be asked to find fractional answers. A few of these prob-
lems would be used in the test at the end of the chapter.

Particular comments. We want to stress the fact that
many students have some problems in writing the mes-
sage in general terms, that is, without referring to particu-
lar numbers for the semi-perimeter and the area. Although
they were not explicitly asked to write the message us-
ing letters (i.e., using an algebraic language), it was very
hard for many of them to express, at a general level, the
actions that they were able to accomplish when working
with manipulatives (concrete rectangles on paper that they
produced themselves using scissors) or drawings.

Despite the intrinsic difficulty of this task, it is impor-
tant that students try to use the natural language to express
their ideas. This will simplify the transition to the abstract
symbolic algebraic language.

Part 3.
In part 3, the students are presented with a problem that
requires a different use of the Naive Geometry technique.



The problem, inspired by that of Abû Bekr seen at the end
of section 1, is the following:

Problem 2: The length of a rectangle is 10 units.
Its width is unknown. We place a square on one
of the sides of the rectangle, as shown in the fig-
ure. Together, the two shapes have an area of 39
square units. What is the width of the rectangle?

10

The teacher asks the students to solve the problem
using similar ideas as the ones used to solve problem 1.
If students do not succeed in solving the problem by the
Naive Geometrytechnique, the teacher may show the new
problem-solving method as follows: Using large cardboard
figures placed on the blackboard, the teacher cuts the initial
rectangle vertically in two (Fig. 17), then takes one of the
pieces and glues it to the base of the square (Fig. 18). Now
the students notice that the new geometrical form is almost
a square. The teacher then points out that the new form
could be completed in order to make it a square. In order
to do so, a small square, whose side isx (Fig. 19), has to be
added. The small square has an area equal to 25. Thus the
area of the new square (Fig. 19) is equal ton�L 1x ) E;.
Its side is then equal toM. From Fig. 18 it follows that
? L x ) M, which leads us to? ) n. Next, other similar
problems are given to the students to solve in groups.

As in part 1, the students are asked to work on a
written description or message of the steps to follow in
order to solve this type of problem.

Particular Comments. The students soon realize that the
problem-solving procedure used in problem 1 does not ap-
ply directly to problem 2. Here, the central idea (and it is
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important that the teacher emphazises it) is the completion
of a square, something that will be very important when
the students work with algebraic symbols later.

Part 4.
As in part 2, the students’ written descriptions or messages
are discussed. After this, the teacher asks them to pose
some problems requiring a specific condition on the sides
of the rectangle:

(i) the sides of the rectangle have to be expressed in
whole numbers;

(ii) the sides of the rectangle have to be expressed in frac-
tional numbers;

(iii) the sides of the rectangle have to be expressed in ir-
rational numbers.

Part 5. Reinventing the formula.
In this part, the students will keep working on a problem
of the same type as in parts 3 and 4. The difference is
that concrete numbersare given neither for the base of
the rectangle nor for the area that the two shapes cover
together. The goal is to help students reinvent the formula
that solves quadratic equations.

In order to do so, the teacher explains to the students
that s/he is interested in finding a formula which will pro-
vide one with the answers to the problems seen in parts 3
and 4.n The teacher may suggest that they base their work
on the written message produced in step 4 and to use let-
ters instead of words. To facilitate the comparison of the
students’ formulas in a next step, the teacher may suggest
using the letter “K” for the base of the rectangle and “�”
for the area of both shapes (see Fig. 20). The equations are
discussed in co-operative groups. The final equation is
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3

The teacher may then proceed to translate the geometric
problem into algebraic language: if the unknown side is ‘?’,
then the area of the square is?1 and that of the rectangle
is K?; thus the sum of both areas is equal to�, that is:
?1LK? ) �. Now, in order to link equations to the formula,
the teacher gives some concrete equations (like?1LM? ) �,

b

FIGURE 20



?1 L dx? ) �x) and asks the students to solve them using
the formula.

The next step is to give the students the equationy?1L

K? ) � and ask them to find the formula to solve this
equation. The students might note that if this equation is
divided byy (we suppose thaty W) (), then we are led to
the previous kind of equation. It suffices then to replace ‘K’
by ‘Kby’ and ‘�’ by ‘ �by’, in the previous formula, which
gives the new formula
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The last step is to consider the general equationy?1L

K?L� ) ( and to find the formula that solves it. The formal
link with the previous equationy?1 L K? ) � is clear: we
can rewrite this equation asy?1 L K? � � ) (. Thus, in
order to get the equationy?1 L K? L � ) ( we need to
replace ‘�’ by ‘��’ and to do the same in the formula.

When we replace ‘�’ by ‘��’ in the formula we obtain
the general formula:

? )
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Of course, this formula is equivalent to the well-known
formula:

? )
�KL

$
K1 � ;y�

1y
,

where in order to obtain all the numerical solutions one
needs to consider the negative square root ofK1 � ;y�.
This leads us to the formula

? )
�K�$

K1 � ;y�

1y
3

Particular comments.
(1) Usually, the students are able to provide the formula

that solves the equation?1 L K? ) � and to use it to
solve concrete equations (as those mentioned above).
That they can produce such a formula and realize the
amount of work that the formula saves is appreciated
very much by the students. This gives them a ‘practi-
cal’ sense of the formula.

(2) However, many students need some time in order to
abandon the geometrical context and to limit them-
selves to the numerical use of the formula. Further,
there are many students who prefer to keep thinking in
terms of theNaive Geometrytechnique. The geomet-
rical versus numerical preference may be caused by
the specific students’ own kind of rationality (some-
thing that is referred to in the educational field by the
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unfelicitous expression “styles of learning”, an expres-
sion that hides more things than it explains!). Some
students have the impression that they no longer un-
derstand if they merely use a formula.Understanding,
for many of them, does not seem to mean simply ‘be-
ing able to do something’.

(3) Most of the students are able to find the formula which
solves the equationy?1 L K? ) �. However, some
students may experience some difficulties. The main
problem is that here, as in the subsequent steps, the
geometrical context is being progressively replaced by
a symbolic one.

(4) To end these comments, we want to stress the fact that
our approach cannot avoid or conceal the problems
that are specific to the mastering and understanding
of algebraic symbols (see section 4 below). Our ap-
proach aims to provide a useful context to help the
students develop a meaning for symbols. It is worth-
while to mention that the use of manipulatives and
geometric techniques in order to derive the formula
were appreciated by our high-school students. A girl,
for instance, said: “I better understand with the draw-
ings, I find this a lot more interesting and fun than the
other mathematics.”

3. About the duration of the teaching
sequence

The teaching sequence that we discussed here may vary in
time depending on the background of the students and their
familiarity with classroom research activities. In one of the
first times that we undertook it, we allowed a period of
80 minutes to each step. However, it is possible to reduce
the time and the steps of the sequence. A variant of the
sequence, that we undertook in an advanced mathematics
high school course, consisted of steps 3 to 5. This can be
done in two periods of 80 minutes each.

4. A concluding (theoretical) remark about
the use of symbols in mathematics

The passage from numbers to letters does not consist of a
simple transcription, as we have noted. In fact, the symbol
must, in part 5, summarize the numerical and geometrical
experiences developed in parts 3 and 4. The encapsulation
of these experiences includes a stage of generalization and
of reorganization of the actions which opens up on a much
more ample description of mathematical objects.

Of course, the new semiotic category (that is, the cate-
gory in which the algebraic symbolism is embedded) offers



new challenges to the students (see the students’ reinven-
tion of the formula shown in Fig. 21) as it did for past
mathematicians (see Radford, in print). For instance, oper-
ations with symbols need to be provided with new mean-
ings. In this sense abstraction does not seem to proceed to
a detachmentof meanings or to more “general” ideas. In-
deed, contrary to a general interpretation, abstraction does
not mean to take away some features of a given object but
to add new ones and to be able to focus our attention on
the features required by the context. This was suggested
by the transference from geometric to syntactic algebraic
symbolism and vice-versa that students showed when solv-
ing second-degree equations at the end of the sequence (for
example,1?1 Ld1?� E; ) (), after having reinvented the
formula.

These considerations lead us to the following intrigu-
ing idea: abstraction is a contextually based operation of
the mind.

FIGURE 21
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Endnotes
	 This article is part of a research project granted by FCAR No.
95ER0716, Qúebec, and Laurentian University Research Funds,
Ontario.
d His main work on Naive Geometry is (Høyrup 1990b).
1 The solution is given in the Liber Mensurationum as follows:

The way to find this is that you add two [to one], such
that you have 3. Now you take half which is one and
a half and multiply that by itself so you get two and
a quarter. So, add 54 to this and you get 56 and a
quarter; take the root and subtract 1 and a half; you
are left with 6 and that is the smaller side; add to it 2
and you will have the longer side, that is, 8. However,
there is a method to find this according to the people
of the al-gabr3 3 3

n The students are already familiar with the concept of formula:
not only have they seen formulas in mathematics, e.g., the formu-
las for the areas of regular geometrical figures, but in the sciences
as well.


