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INTRODUCTION

Barely some fifteen years ago, a new and completely different interpretation of

Mesopotamian mathematics arose due, on the one hand, to new philological analyses

and, on the other, to the development of new methods in the historiography of
mathematics; these have been increasingly incorporating anthropological and

sociological categories in the understanding of the mathematics of the pasto The new

results have been changing the traditional view of Ancient Near East mathematics
and their influence on Greek mathematics and have led us to review old questions

and to raise new ones. One of these questions dea'..; with the transition from

arithmetic thinking to algebraic thinking. Another question is the role played by

language and symbolism in algebraic thinking. ln this paper we will deal with these
. 1

two questIOns .

Concerning the first question, we shall attempt to show that (numeric) algebraic

thinking emerged from proportional thinking as a short, direct and alternative way of

solving 'non-practical' problems. ln order to do so, in the first section of the chapter,

we briefly describe some of the features of Proportional Mesopotamian thinking.
The second section is devoted to the elaboration of our thesis. The historical teèhni

cal evidence and its argumentation is presented in following sections. Since a certain

knowledge of Diophantus' algebraic methods is required, we give an overview of

Diophantus' monumental treatise Arithmetica, and deal with Babylonian geometric

algebra.
The second question with which we deal in this paper - that of the role of lan

guage and symbolism in algebraic thinking - is submitted to the same methodologi

cal approach that we used in the previous sections deriving from our perception of
what mathematics is: we see mathematics as a semiotic manifestation of the culture

in which mathematics is practised. Consequently, we suggest that the role of sym

bolism in algebraic thinking needs to be studied through the social meaning of alge-
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bra and through the different forms of symbolisation that the culture under consid

eration uses to symbolise its objects (regardless of whether or not these are mathe

matical). This is why, in many instances, we shall refer to some sociocultural com

ponents of the world of Mesopotamian scribes. The final section of the chapter con
tains some pedagogical remarks.

MESOPOTAMIAN PROPORTIONAL THINKING

Mathematics arose in ancient civilisations intimately linked to the social, political

and economic development of the cities. For instance, ancient historical records
suggest that the numerical cuneiform signs used in Mesopotamia were, in fact, the

achievement of an important semiotic phenomenon preceded by the commercial

counting activities first based upon incised bones and later on tokens (Schmandt
Besserat, 1992; Jasmin and Oates, 1986; Le Brun et Vallat, 1978). The expansion of

the cities required new and more elaborate forms of internai organisation which led

to new and complex problems --e. g. how to calculate the area of a certain piece of
land, how to calculate the interest of a loan, how to solve inheritance problems, ego

how to calculate the price of different commodities2. Nevertheless, we also find

'non-practical' problems, i.e. problems that, although being formulated in terms of
the concrete semiotic experience of everyday life, have no direct relation to practical
needs3.

Practical and non-practical problems appear in two of the most important
mathematical CUITentsobserved in ancient Egyptian and Babylonian civilisations: a

geometrical one and a numerical one. ln the first cUITent, we find problems which

deal with the calculations of area and perimeter of geometrical figures while, in th~

second, we find problems about (contextual) numbers 4. ln the two previous catego

ries, problems are often solved using proportional thinking, which was, in fact, one
of the most important areas developed in Mesopotamian mathematical thought. Not

only is it attested to by the Babylonian tables of reciprocals, which were a by

product, but also by the clever ancient methods based upon proportional tools that

were developed to solve problems. One of the three oldest known problem texts (ca.

third millennium BC), which was found in 1975 when the Italian Archeological

Mission discovered the Royal archives of the city of Ebla, is the text TM.75.G.1392

which contains a type of problem whose statement and problem-solving procedure

reveal some features of early proportional thinking. The problem (concerning the

assignment of cereals) is stated (according to Fribergs' reconstruction) as follows:

Given that you have to count with 1 gu-bar for 33 persons, how much do you

count with for 260,000 persons? (Friberg, 1986, p. 19).

The problem obviously leads to division. However, the division is not easy to

perform within the sexagesimal system. Therefore, the text shows a sequence of



calculations: 3 gu-bar for 99 persons, 30 gu-bar for 990 persons, and so on (ibid, p.
20). The sequence is based upon proportional tools which allows the scribe to obtain

an (approximate) answer.

The most sophisticated proportional problem-solving procedure deals with the

methods of false position which appear as the greatest achievement of Mesopota

mian arithmetical thinking. These methods are based upon the idea of assuming

some false values for the sought-after quantities and then adjusting them through a

'proportional adjusting factor' which allows one to modify -in a proportional way
the false values in order to transform them into the true values.

The following problem is an example of a non-practical problem solved by a

false position method. It is included in a tablet from Susa, probably slightly after the

Ist Babylonian Dynasty, i.e. at the end of the 17th century Be. (see Bruins and Rut

ten, 1961, pp. 101-103l The problem is to fmd the sides ofa rectangle whose width

is equal to the length minus a quarter of the length, and the diagonal is 40'. (Note

that in a real situation, anybody who knows the stated relationship between the sides

of the rectangle obviously already knows the actual sides of the rectangle. This prob

lem is merely a riddle). To solve the problem, the scribe assumes a false quantity for

the length. He says: 'You, put one for the length'. He then calculates the width, by

subtracting 1/4 (that is 15') from 1°, which gives 45'. He calculates the square of
both false sides, which gives 12= 1 and (45,)2 = 2025" = 33 '45". The sum of the

squares is 1° 33 '45". He then takes the square root of 1° 33 '45" which is 1° 15'.

This is the value of the false diagonal. The true diagonal, 40', is less than the ob

tained value, He then calculates the inverse of 1°15', which is 48'; he multiplies this

number by 40'; the result is 32'. This is the 'proportional adjusting factor' by which

he multiplies the false length (i.e, 1°) and the false width (i.e. 45 '): the scribe then
obtains 32' x 1° = 32' and 32' x 45' = 24'. Therefore, the resulting numbers 32' and

24' are the true length and width, respectively,

ln modem terms, the problem requires one to find the length, x, and the width, y,
of a rectangle whose diagonal is a given number d, From the relation

d = Jx2 + l = ~X2 + (~x Y = ~ x we cau deduce that x = (~r.d. ln contrast,

the scribe actually assumes a fa Ise length, Xo' which gives a false width

Ya = xa - ~ Ka = ~ Ka . He calculates the false diagonal using

/2f.3't55 .do = 1Ka + (1 Xa) = '4 Ka = '4 (because xa =1). The proportlOnal argument under-

lying the procedure leads the scribe to calculate the inverse of do=5/4 and to multi

ply this inverse by the given diagonal d=40.

This problem clearly shows the functioning of the ancient false position method
and will suffice to elaborate our historical reconstruction of the transition from

arithmetic to algebra in Mesopotamian land, However, before going on to our next



stop in our historical joumey, we need to make the following cultural and epistemo

logical remark: the idea of using a 'fa Ise quantity' to start the false position method,

leans on a deeper and more complex idea: at the beginning of the problem, the 'true

quantity' (i.e. the exact solution of the problem) may be legitimately thought of

through another quantity. 'False quantities' thus appear as metaphors of 'true quanti
ties'. Furthermore, this is not a phenomenon restricted solely to mathematics: Meso

potamian thinking is full of metaphors. Odes, epic poems, literary and religious

texts, for instance, show an intricate system of metaphorical expressions (see e.g.

Wilson, 1901). AIgebra, we shall suggest, was couched in such a system.

ALGEBRAIC THINKING AS A METAPHOR OF
THE FALSE POSITION METHOD

As we shall see in later sections of this chapter, where we focus on some technical

details, the influence of false position methods in the emergence of algebraic ideas

can be discemed through some important structural similarities between false

position reasoning and early algebraic thinking. One of the studies of the ancient

connection between the Babylonian false position method and algebra was made by

François Thureau-Dangin (l938a). Following the trends of the old interpretation of
Babylonian mathematics based on the possibility of translating the calculations

shown in many of the tablets into modem algebraic symbolism, he noted a strong

parallelism between the calculations done in some problems solved by false position
methods and those of the modem algebraic methods6. He then claimed that, indeed,

some Babylonian procedures were algebraic procedures. Thureau-Dangin's main

idea was supposedly supported by the fact that, in some problems, the scribe takes
the number one as the false solution (such an example could be the problem

discussed at the end of the previous section) and when, according to Babylonian

procedures, we replace the number one by our modem unknown 'x', the problem

solving procedures look much like the modem algebraic procedures. He, (as weil as

others, e.g. Vogel, 1960), claimed that the number one was actually taken as a

representation of the unknown and if we cannot, straight out, see the unknown, it is

simply because the scribes did not have a symbol with which they could represent it.
However, the idea that Babylonians developed an 'invisible algebraic language' (i.e.

a genuine algebraic language without symbols) has been abandoned (see Radford,

1996a, pp. 39-40). Effectively, there is no clear and safe argument supporting the

statement that the Babylonian scribes actually thought that the number one
represented the unknown in an algebraic sense (see H0yrup, 1993b, p. 260). On the
contrary, this peculiar numerical choice for the unknown seems to have allowed the

scribes to systematise the numerical problem-solving methods and hence to reach an

important step in the conceptual development of ancient proportional thinking. ln



fact, when ancient problem-solving procedures may be safely identified as
«algebraic», which is the case of the problem mentioned in footnote 10, the

unknowns are not represented by the number 'l'or anything else for that matter;

instead, the unknowns bear their contextual name (e. g. the length and the width of a
rectangle).

Rather, the algebraic idea of unknown seems to have been thought of as a meta

ph or of the 'false quantities' used in the ancient false position method. Tthappened,

we suggest, when scribes stopped thinking in terms of false quantities upon which

the false position method is based and, 100king at the false quantity metaphorically,
began to think in terms of the sought-after object itselj, accepting to consider this

object as a number (i.e. an operable, manageable number) regardless that it was not

yet known7. This could happen in solving non-practical problems previously solved
by false position proportional methods like the following (Tablet YBC 4652, No. 7),

where the method of solution is unfortunately omitted:
'1 found a stone, but l did not weigh it; after l added one-seventh and added one

eleventh (of the weight and its one seventh). l weighed it: 1 ma-na. What was the

original weight? The origin(al weight) of the stone was t ma-na, 8 gin, (and) 22 i
se' (Based on Neugebauer and Sachs' reconstruction; 1945, p. 101).

ln modem notations, this problem reads as follows8: x + ~ + 2. lx +..: Î = 1 .7 11 7)

The algebraic way of thinking could have even been conceived when ancient scribes

faced an even simpler problem. For example, a problem of this type9: x + 2. x = 1.
11

Let us suppose that this problem concems the weight of a stone. The false posi

tion method is as follows: we assume (according to the usual line of thought in
Babylonian mathematics) that the sought-after quantity is Il; then, the stone and one

eleventh of its weight is 12. However, we should have 1. This means that we need to
reduce the 'false position', that is the false value that we assumed at the beginning (i.

e. Il). To reduce it, an elementary proportional argument shows that we need to take

one 12th of our initial assumption, so the answer to the problem is 11/12 (or 55/60 =

55' in the sexagesimal system).

To see the metaphor that we are suggesting at work, let us, instead of beginning

by assuming a false position or false solution, start the problem-solving procedure

by reasoning on the exact unknown sought-after quantity. ln this case, the calcula

tions unfold in a different way: first, we multiply both sides of the 'equation' by 11;

thereby transforming the 'equation' into an 'equation' without fractional parts. This

leads us to an equation that we would write as 12x = Il. Now, following a recurring

Babylonian procedure, we just need to find the inverse of 12, which is 5', and to

multiply this inverse by Il, which gives us the answer 55'. (Note that the procedure



of multiplying both sides of the 'equation' bya number is attested to in many Baby

lonian problems, e. g. Textes Mathématiques de Suse 10).

The type of problems that we have just discussed were frequent in ancient civili
sations. For instance, one problem of this type is found in the Egyptian Rhind's Pa
pyrus; another is found in Babylonian tablets. This is the case of problem No. 3 of
tablet YBC 4669 which could be translated into modem notations as follows Il:

2 1x--·- x = 7.
3 3

The conceptual connection between false position ideas and algebraic ones can
also be found in post-Greek mathematics. It can be retraced to some mediaeval
mathematical treatises. It is particularly enlightening that, in the false position meth
ods, mathematicians, at the beginning of the problem-solving procedure, used to
refer to the action of choosing the false numbers as 'making a position'. ln the same
way, when a problem is solved by algebra, the introduction of the unknown is some
times referred to as 'making a position'. For instance, in Filippo Calandri's Una
racolta di ragioni (l5th century), problem 18 deals with a problem that we may

x
translate into modem notations as: -- = x - 1

x + 1

('Trouva U numero, che partito per uno, più ne vengha un meno'. Santini (ed.),

1982,p.19).

Solving this problem through algebra and by calling the unknown the thing ('la

cos a" according to the Italian mediaeval tradition) Calandri says: 'Farai posizione

che quel numero sia una co(sa)' (I will make a position so that the (sought-after)

number is a thing). An early example (14th century) is found in problem 6 of Mazz
inghi's Trattato di Fioretti. ln this problem Mazzinghi says: 'El primo (modo) èche

si faccia positione che lia prima parte sia 5 et una chosa' (Arrighi (ed.), 1967, p. 23). >

The connection between false position ideas and algebraic ones is more explicit

in an anonymous abacus treatise of the 14th Century: Il trattato d'algibra. ln this

treatise, the unknown is defined just as a position: ' ...in prima noi diremo che sia
questa chosa, onde diro che non sia altro se non è una posizione che si fa in molte

questioni ... ' (first of ail we shaH say what this thing is, where I shall say that it is no

more than a position that one makes in many questions; Franci and Pancanti, eds.
1988, p. 3, my translation).

We can go one step further in our connections between algebraic and false posi

tion ideas by referring to a book written in 1522: Francesco Ghaligai's Prattica

d'Arithmetica. However, in this case, algebraic ideas have been developed enough to

be taken as the explanatory substratum in which the false position ideas are set up.
Ghaligai says:

'We can notice that the position is a concept assimilated to the thing that is chosen ac

cording to the knowledge of the intellectua! realm. Speaking in the case of a thing not

known to you, right away the mind will think as if it already knew and say: position is a



quantity placed according to the case (the problem) and even though there are two posi

tions, sometimes with only one position the case can be solved and one finds that which
is necessary.' (Ghaligai, 1548, p. 62; my translation).

Ghaligai's Prattica d'Arithmetica shows then that the conceptual development of

the unknown has completed a loop, now changing the roles of ideas: at that time, the

metaphorical-analogical process was reverted and one explains the false position

ideas in terms of algebraic ones. methods have to arise, thereby making it possible to

handle the algebraic unknown. The metaphorical-analogical process underlying the

passage from arithmetic to algebra will map or induce, as is the case in many meta

phors (see Lakoff and Nunez, in
To end this section let us stress the fact that the new algebraic object of unknown

does not come to life alone: it emerges along with new methods. False position

methods deal with numbers only. So, new print), important structural features of the
flfst domain - here the arithmetical one - into the second domain - here the alge

braie one. This metaphorical induction is very clear in many passages of Diophan

tus' Arithmetica. lndeed, many of Diophantus' algebraic methods are hardly under

standable without linking them to the ancient false position methods, as we will see

in the next section. ln order to understand this specifie aspect of problem-solving

methods, we now need to examine the place of Diophantus' Arithmetica in the de

velopment of algebraic ideas.

ALGEBRAIC IDEAS lN DIOPHANTUS' ARITHMETlCA

As we know, Diophantus' Arithmetica (written circa 250), is made up of 13 books (3

of them are lost) dealing with the resolution of problems about numbers. Book 1
contains a short introduction in which a division of numbers into species or

categories is presented: the squares, the cubes, the square-squares, the square-cubes,

the cube-cubes. Each category contains the numbers that share a similar form or

shape (the same eidos). lnstead of being merely riddles like the Babylonian non

practical problems, the problems of the Arithmetica were formulated in terms of the

mentioned species. For instance, problem 10 from Book 2 reads as follows: 'To find

two square numbers having a given difference' (Heath, 1910, p. 146).

Undoubtedly, within the philosophical princip les of Classical Greek thinking

(where the search of origins and rational organisation was a starting point), Babylo
nian numerical word-problems and ail the subsequent numerical activity surrounding

similar problems in the post-classic Greek period, an activity particularly attested to

by the Anthologia graeca (Paton, (ed.), 1979), did not find a suitable niche to pros

per12. By transforming the Babylonian numerical word-problems into problems

about abstract Greek species and other ancient well-known riddles that Diophantus

supposedly disguised in abstract terms in his Arithmetica (e.g. Book l, problems 16-



21), Diophantus elevated this unscientific discipline to a scientific one 13.

This was not the only important new aspect incorporated by Greek algebraists.
There is another one related to the introduction of indeterminate numbers to the

mathematical realm. This was done through a new use of the concept of arithmos

(ariqmoV), that is, the 'number'. 'The arithmos', says Diophantus, 'is an indetermi

nate multitude of units' (cf. Ver Eeck, 1926, p. 2) - although, in the solution of

many problems, it can be an indeterminate multitude of fractional parts.
The subtle, yet fundamental, step made by Diophantus in introducing indetermi

nate numbers to the mathematical realm can be better appreciated if we see it within
the heritage of the ancient philosophers. ln this line of thought, it would be worth

while to remember that, in one of the few extant fragments of the first Pythag~ans,
Philolaus says: 'Actually, everything that can be known has a Number; for it is im

possible to grasp anything with the mind or to recognise it without this (Number)' 14;

and here, Number means a determinate multitude. Thus, by introducing the arithmos
as an indeterminate multitude Diophantus extended the borders of what can be
known. By the same token, the aforementioned concept of arithmos gave way to the
creation of a completely new theoretical calculation on indeterminate amount of

units (e.g., in modern notations, rules dealing with calculations like x x x2 = i or

; x x4 = x3) that proved to be very powerful in the resolution of problems. It is

important to note that these mathematical accomplishments at the end of the Antiq
uity were linked to an increasing (albeit not complete) abandonment of Greek c1assi
cal principles and the spreading of neo-Platonistic speculations that made it possible
to think in new, different and promising ways (see Lizcano, 1993).

ln most of the problems of the Arithmetica, the formai structure of their state

ment follows the same pattern: the problem is stated in terms of operations per

formed on some categories of numbers (the square numbers in the previous exam- .
pie).

At the beginning of Book l, Diophantus gives a description of the heuristics that

one should follow in order to solve the problems. This is the very first explicit an
cient description about how to solve problems on numbers that we know. For our

discussion we will quote the following extract:

' ...if a problem leads to an equation in which certain tenns are equal ta terms of the

same species (eidos) but with different coefficients, it will be necessary ta subtract like

from Iike on bath sides, until one term is found equal ta one term. Ifby chance there are

on either side or on bath sides negative terms, it will be necessary ta add the negative
terms on bath sides, until the terms on bath sides are positive, and then again ta subtract

like tram like until one term only is left on each side.' (Heath, 1910, p. 131)'5

ln modern terms, this passage tells us that if in a problem we are led to an equa

tion of this type:

0. numbets ± 13squares ± cS cubes ± € square squares±.. = 0. ' numbets ± 13' squares ± cS' cubes ± € ' square squares ± ...



we have to add or subtract the terms sharing the same eidos in order to reduce the

problem to the case in which a species equals another species, that is, an equation of

the type axn = bxffi.

To solve the problems, Diophantus often chooses some quantities involved in the

statement of the problem. For instance, in the previous problem, he chooses the

difference equal to 60. Then he chooses the root of one of the sought-after numbers
equal to the arithmos, which plays the role of an algebraic unknown. The other

sought-after number is chosen as the arithmos plus 3. This leads him to the equation

that could be translated into modem symbols as (x + 3f -x2 = 60 where he is able

to obtain the equation 6x+9=60 and finally the solution x = 8 ~ . So the sought-after

square numbers are the fractional numbers 72 ~ and 132 ~ .
Of course, these are not ail the solutions of the general problem. This is why

Diophantus' solutions are often seen as incomplete. However, we have to be very

cautious at this point. ln fact, finding out how to express (in an explicitly verbal or

symbolic way) ail the couple of members of the species of squares that verify the
stated condition in the previous problem (or in another problem) is a rather modem

problem and not an ancient one. The problems of the 'Arithmetic Books' of Euclid's
Elements are not concemed with the task of describing, in an explicit form, each of

the members of a certain class of numbers (e.g. the perfect numbers; see Euclid's

Elements, Book IX, proposition 36). Another example can be the 'formula' to pro

duce polygonal numbers found by Diophantus himself. This 'formula' does not
describe the elements of a class but produces as many numbers as we want (triangu

lar, square, pentagonal numbers and so on: see Radford, 1995a). By the same token,

Diophantus' problem-solving methods do not aim to find nor describe ail the solu

tions of a given problem (ex cept, of course in the cases where the problem has only

one solution) but to produce as many solutions as we want. The alleged incomplete

ness of Diophantus' solutions are relative to our modem point of view. Without

taking into consideration Diophantus' own conceptualisation, Diophantus' Arithme

tica becomes just a mere compendium of problems solved in a way that 'daZzles

rather than delights' and Diophantus himself appears 'unlike a speculative thinker

who seeks general ideas' but as someone looking only for 'correct answers' (e,g. this

is the case of Kline's perception of Diophantus: see Kline, 1972, p.143, from whom

the quotations were taken). Certainly, for a Babylonian scribe, Diophantus' Arithme

tica would be seen as the product of a genuine speculative thinker.

THE TRACE OF PROPORTIONAL MESOPOTAMIAN THINKING

lN GREEK ALGEBRAIC THINKING

We are now ready to technically tackle the first question raised in the introduction of

this chapter. The essence of our manoeuvre consists in showing that the functioning



of the algebraic concept of unknown in Diophantus' Arithmetica is too closely

related to the functioning of the concept of false quantities of the Babylonian false

position method to be regarded as a mere accident. On the contrary, the structural
coincidence in both concepts is fully understood on the basis of the idea that the

algebraic unknown was conceived as a metaphor of its correlated arithmetical

concept -the faIse quantities. Although there are many structural coincidences
between the two concepts, here we shall refer to one of them: reasoning in terms of

fractional parts.
Let us refer to problem number 18 from a tablet conserved at the British Mu

seum (BM 85196) that goes back to the ancient Babylonian period. It concerns :10
rings of silver. 1/7 of the first ring and 1111 of the second weigh 1 sicle. The first,
diminished by its 1/7, weighs just as much as the second diminished by its 1111 (See
Thureau-Dangin, 1938b, p. 46). ln modem notations, the problem can be stated as

1 1 1 1
follows: -x+-y=l' x--x=y--y.7 11 '7 11

The scribe's reconstruction of the solution given by Thureau-Dangin (1938a, pp.

74-75) suggests that «the first ring diminished by its 1/7» is transformed into «6

times the 1/7 of the first ring». By the same token, «the second ring diminished by

its II Il>> is transformed into <<10times the 1III of the second ring». The reasoning is
then carried out on the above-mentioned fractions (Le. «1/7 of the first ring» and

«1111 of the second ring»). These fractional quantities are in a 10 to 6 ratio. There

fore, by employing the false position method the scribe assumes 10 for the 1/7 of the

first ring and 6 for the 1III of the second. He then adds the false assumed values and

gets 16. However, he was supposed to get 1. The canonical Babylonian proportional

process leads to the question of finding a 'proportional adjusting factor' which, in

this problem, corresponds to the inverse of 16. The scribe finds that the inverse of 16 .
is 3'45'. To find «1111 of the second ring», he multiplies the false value (i.e. 6) by

the 'proportional adjusting factor', 3'45', and finds 22 '30'. Next, to find «1/7 of the

first ring», he multiplies 3'45' by 10 and gets 37'30'. He multiplies 22'30' by Il

and gets 4° 7'30' the weight of the second ring, He multiplies 37'30' by 7 and gets
4° 22'30'; the weight of the first ring.

Let us now examine the Greek counterpart. ln problem 6 of Book l, Diophantus

tackles the problem to divide 100 into two numbers such that 1/4 of the first exceeds
16

1/6 of the other by 20 .

This problem cannot be solved by the Babylonian false position method 17. How

ever, Diophantus' method of solving the problem begins by following the Babylo

nian pattern seen above: the reasoning is based on the fractions of the sought-after

numbers. Diophantus takes the 116 of the second part as the unknown (which he

calls the arithmos, that is, the number and represents it by the letter V). Thus, the

second number becomes 6 times the number. 'Therefore, he says, the quarter of the
first number will be 1 number plus 20 units; thus, that the first number will be 4



numbers plus 80 units. We want it so that the two numbers added together forrn 100

units. Therefore, these two numbers added together forrn 10 numbers plus 80 units

which equal 100 units. We subtract the similar terrns: 10 numbers equal to 20 units

remain and the number becomes 2 units ( ...r. (Ver Eecke, 1926, p. 12-13; my trans
lation). Having found that the unknown is 2, Diophantus tinds that the sought-after
numbers are 88 and 12.

Problem 5 of Book 1 of the Arithmetica shows also another example of reason

ing performed on fractions of the sought-after numbers.

The structural coincidence between the algebraic concept of unknown and the

faIse quantity of arithmetical, proportional thinking can be traced to a time preceding
Diophantus, as we will see in the next section.

THINKING lN TERMS OF FRACTIONAL PARTS:
EARLy HISTORICAL EVIDENCE

The preserved fragment of a Greco-Egyptian papyrus, dated circa the tirst century
and called Mich. 620, contains three mathematical problems with the following

being one of them:
'There are four numbers, the sum of which is 9900; let the second exceed the

tirst by one-seventh of the tirst; let the third exceed the sum of the tirst two by 300,
and let the fourth exceed the sum of the tirst three by 300; tind the numbers' (Ac

cording to Robbins' reconstruction, 1929, p. 325).
Our mode~ notations allow us to write the problem in question as shown in the

rectangle:

al + al + al + a4 = 9,900

1
al - al = - al

7

al - (al + al) = 300

a4- (al + al + al) = 300

The tirst part of the solution is not completely preserved, but it can be recon
structed from a kind of tabular arrangement or 'matrix' placed at the end of the solu

tion. It is used to display the calculations and functions as an aid to help solve the

problem. The 'matrix', which is comprised of 4 columns divided by a vertical !ine,

suggests that the choice of the unknown, which the scribe represents as c; , like Dio

phantus did in his Arithmetica to designate 'the number', (arithmos), is 1/7 of the
tirst number. It is, therefore, also the same pattern found in Babylonian mathematics.



The first sought-after quantity, which appears at the left of the first column of the

table (that is, at the left of the first vertical line; see below), is equal to seven c;

(which is an abbreviation of the who le expression «7 numbers»); the second number

(found to the left of the second vertical line), is equal to eight C; . From that, the

scribe frnds that the third number is 300 plus fifteen C; and that the fourth number is

600 plus thirty C; . The sum of the numbers then is 900 plus sixty C;, which must

equal 9,900. The scribe gives the answer 150, which corresponds to C;, and then
arrives at the sought-after quantities: the first one is 1,050, the second one is 1,200,
the third one is 2,550 and the fourth one is 5,100.

1/7 300 300 9900

ç 7

1050
150

1200

ç 15 300

2550

600

(Table appearing in the Mich. 620 papyrus according to the reconstruction of

Frank Egleston Robbins, 1929, p. 326).
It is worthwhile to note, at this point, that the separation of numbers into col

umns, allows the scribe to divide each number into an unknown part (found to the

left of the vertical line) and a known part (found to the right of the vertical line).

This suggests an explicit and systematic way of dealing with the first literal sym

bolic algebraic language. Notice that this is basically the same pattern which is used
to carry out calculations with symbolic expressions some fourteen or fifteen centu

ries later (e.g. Stifel, 1544).
Nevertheless, we should note a difference: in the first case - that of the Mich.

620 papyrus - the algebraic language is seen as a heuristic tool (one calculates with

symbolic expressions); in the second case - that of late mediaeval and early renais

sance mathematics - the algebraic language begins to be seen as a quasi

autonomous object leading to a new theoretical organisation (one calculates on

symbolic expressions). Many treatises will then begin to display rules on how to
carry out calculations on symbolic expressions (see the excerpt from Stifel's Arith

metica Integra, page 239).

Probacur mu!ciplic:uione radi,cis in {co ut
6~t-4~...,....IO
6~-r4.~-IO

36~~i-14~;-60~
-t-14~-r 16~-4°~

- 60~-40~T 100
36n-r48~-r-'00-'04~-80~



THE BABYLONIAN NAïvE GEOMETRY

So far, our work has dealt with the numerical origins of algebraic ideas. We claimed

that the Babylonian mathematical proportional thinking provided the conceptual
basis for the emergence of elementary numerical algebraic thinking. There is,

however, another Babylonian mathematical CUITentwhich leads to another kind of

'algebra'. ln fact, 1. H0yrup, through an in-depth analysis of the linguistic sense of

the terms occurring in Babylonian mathematical tablets, has suggested that a large

part of problems was formulated and solved within a geometrical context, using

what he calls a 'cut-and-paste geometry' or 'naïve geometry' (e.g. H0yrup, 1990,
1986, 1993a, 1994). ln particular, this is the case of problems that have been

traditionally seen as problems related to 'second-degree equations'. We cannot

discuss here, at length, the Babylonian Naïve Geometry. For our purposes, we shall

just look at two examples of the new interpretation of the second-degree Babylonian

algebra (see also Radford, 1996a).

•••

1 1

implicit projection

Problem 1 of the tablet BM 13901 deals with a square whose surface and a side

equal 3/4. The problem is to find the side of the square 18.



Then, the scribe cuts the width l into two parts and transfers the right side to the

bottom of the original square.

1/2.. ~

Now, the scribe completes a big square by adding a small square whose side is

Y2. The total area is then Y. (that is, the area of the flfSt figure) plus Y. (that is, the

area of the added small square). It gives 1. The side of the big square can now be

1/2

DJ
!'U 'C\J ~

~ -----------

The basic idea is that of bringing the original geometric configuration to a

square-configuration. However, not ail the problems can be solved by cut-and-paste

methods alone. For instance, problem 3 of tablet BM 1390 l deals with a square

whose area less a third of its area plus a third of its side equals 20' .



fig.4

fig.2

8

fig.l

fig.3

As H0yrup suggests, the procedure followed by the scribe is that of removing a

third of the original square (fig. 1). After that, a rectangle of Width 1 is projected

over the side, obtaining a configuration like fig. 2, A third of the projection is kept,
which leaads to the next configuration (fig. 3).

Finally, 'in order to obtain a normalised situation (square with attached rectan

gle), the vertical scale is reduced with the same factor as the width of the square, i.e.,
with a factor 2/3 (...)' (H0yrup, 1994, p. 13). Now the scribe can apply the procedure

which solves problem 1 from Tablet 13901 discussed above.
We have discussed this last example because it shows how proportional thinking

also permeates the cut-and-paste geometrical thinking. Changing the scale is, in fact,
a proportional idea.

On the other hand, it is important to note that cut-and-pa~te procedures involve

known and unknown quantities in a very particular way. Firstly, in Naïve Geometry,

semantics plays a strong role throughout the problem-solving procedure. ln Numeri

cal AIgebra, rooted in proportional thinking, the original Semantics is lost once the

equation is reached (cf. Mich. 620 and Diophantus' Arithmetica). Secondly, in Nu

merical Algebra the unknown is directly involved in the calculations. For instance,

in problem 6, Book l, mentioned above, (and translated here into modern notations

in order to abbreviate our account), Diophantus performs the following calculations:

6x + 4x+80 = 100, and gets 1Ox+80= 100. He then operates on the unknown within a

side of the equation. ln other problems he performs calculations involving the un

known in bath sides of the equation (e.g. Book l, problems 7-12. ln problem 7, for
instance, Diophantus solves the equation 3x-300=x-20. See Ver Ecke, 1926, p. 13

ff).



ln contrast, the algebraic concepts rooted in cut-and-paste geometry (i.e. Naïve

Geometry), do not seriously involve the unknown quantities in direct calculations

(see Radford, 1995b, footnote 6). For instance, in problem 1, tablet 13901 seen

above, the projection, and not the unknown-side, is halved.

The previous discussion suggests that very different conceptualisations underlie

the AIgebra embedded in Naïve Geometry and the Numeric AIgebra. As seen above,

their methods and their concepts are essentially different. The difference can also be

seen in terms of problems. Most of the problems in Naïve Geometry deal with prob

lems beyond the tools of first-degree or homogeneous algebra. However, it is possi
ble to detect some interactions between both kinds of algebras. ln fact, problem 27,

in book 1 of Diophantus' Arithmetica, is a classical problem stated in the realm of

Naïve Geometry. Although stated in a numerical form, Problem 27 has the traces of

its old geometrical formulation (see H0yrup, 1985, p. 103) and appears then as a

numerical reconceptualisation of the old cut-and-paste technique (we shall retum to

this point in the section, below).
However, some connections between the cut-and-paste technique and first degree

algebra could happen even within Babylonian mathematics themselves: this is what

the solving procedure of problem 8 of tablet 13901 suggests. ln fact, using H0Yrup'S

notations, we can represent the squares by Q J and Q2 and their side by SI and s2,

respectively. The problem can then be formulated as fol!ows:

QI + Q2 = 21'40"

SI + S2 = 50'

The solution begins by taking the half of the sum of the sides. Taking a new side

which is equal to the half of the sum of the sides is a recurrent idea in many of the

Babylonian geometrical problem-solving procedures. The 'half of the sum' idea also

appears in Babylonian numerical problem-solving procedures (see our discussion of
tablets VAT 8389 and 8391, in Radford, 1995b). This suggests an early link between

geometrical and numerical algebraic ideas.

LANGUAGE AND SYMBOLlSM lN THE DEVELOPMENT
OF ALGEBRAIC THINKING

ln this section, we would like to make a flfSt artempt at exploring the problem of

the development of early algebraic thinking with regards to language and symbol

ism. First of al!, it is important to stress the fact that it is completely misleading to

pose the problem of the development of algebraic thinking in terms of a transcul
tural epistemological enterprise whose goal is to develop an abstract and elaborate

symbolic language. Indeed, language and symbols play an important role in the way



that we communicate scientific experiences. Nevertheless, their use is couched in

sociocultural practices that go beyond the scope of the restricted mathematical do

main. A more suitable approach to the study of the relationships between symbols

and language on the one hand, and the development of algebraic thinking on the

other, might thus be to analyse language and symbolism in their own historical so

ciocultural semiotic context. The case of Mesopotamian scribes may help us to illus

trate this point. ln this order of ideas, it is worthwhile to bear in mind that the oldest

tablets suggest that they were first of ail seen as a complementary tool to record

information. The signs that formed a 'text' in the proto-literate periods known as

Uruk IV and III (3300-2900 BC) reflected the key words of the messages inscribed
on the clay tablet without any «syntactic relations» (Nissen, 1986, p. 329). The

meaning was often suggested by the pictographic form of the sign; this is the case,

for instance, of the sign SAG, 'head', where the sign shows the profile of a head with
the eye, the nose and the chin 19. The archaic pictographic writing was later replaced

by cuneiform writing - in alllikelihood related to the needs arising from the transac

tions of the Sumerian administrative bureaucracy and the emergence of a new tech

nological artefact: an oblique new stylus leaving the impression of 'nails' (cunei) on

the clay. The cuneiform writing was increasingly used to reproduce the oral lan

guage and when the Semitic Akkadian language became the spoken language, Ak

kadian was written following the cuneiform syllabic tendency. These changes

brought about two important modifications: first, the way to convey the meaning of

the text changed radically; it no longer relied upon pictographic insights. Second,
there was a radical diminution in the number of signs. While by 3200 Be a writing

system had some 30 numerical signs and some 800 non-numerical signs (Ritter,

1993, p. 14), by the first half of the second millennium Akkadian could be written
with some 200 cuneiform signs reproducing the spoken language with very little

ambiguity (Larsen, 1986, pp. 5-6).
This point connects us with two of the most salient particularities of ancient

Mesopotamian mathematical texts which have very often puzzled historians and

mathematicians who attempt to understand Babylonian mathematics from the per

spective of modem mathematics: fustly, the texts do not show any 'specialised' or
'mathematical' symbols to designate the unknowns; secondly, the texts do not dis

play grandiose eloquence conceming the explanation of the problem-solving meth

ods followed to reach the answer of the problem. ln fact, conceming this last point,

with the very moderate exception of the Textes Mathématiques de Suse, the scribe

limits him/herselt20 to indicate only the calculation to be carried out to solve the

problem (ifnot, as is the case ofmany problems, to simply mention the answer)21.
The reason of what we see as a «silence» is not the absence of mathematical

'specialised' signs like 'x', 'y' (signs which are but merely inconceivable and unneces
sary within the realm of Babylonian thought). This «silence» is due neither to an



incapacity to write a mathematical expression - and eventually, in the Old Babylo

nian period (2000-1600 BC), any algebraic one - but an accepted sociocultural way
to transmit and record the information which demarcates the frontiers of what has to
be written and how22.

To clarify this last point, remember that the tablets bearing some «algebraic»

content were, in all likelihood, not produced in professional activities (e.g account

ing, book-keeping, surveying) but in the Scribal Tablet-Houses, that is, in the institu

tions created to train the future scribes. The clay tablets were, without a doubt, privi
leged tools in the teaching practices. However, they do not merely reflect the content

of the teaching but they also mirror the method of teaching and its symbolic forms as

weil. Conceming the method of teaching, some tablets show that instmction was

heavily based on the mastering of cuneiform writing; another, no less important
point, was to prepare oral recitations (that were under the supervision of the second

person in the hierarchy of the Tablet-House, the sesgal or «eider brothem, the assis

tant of the «fathem of the School). ln the written compone nt of the scribal training,

students had to copy what the teacher said or did. ln many cases, the clay tablet
shows a sentence (or a passage of a literary work) on one side and, on the other side,

with a less confident calligraphy, a copy (visibly the student's copy) of the given
sentence (see Lucas, 1979, p. 311 ff.). It is not difficult to imagine the enormous

difficulties that young students had to face trying to master the stylus and the mies

of cuneiform writing. ln a tablet, known as 'ln the Prise of the Scribal Art', we can

read: 'The scribal art is not (easily) leamed, (but) he who has leamed it need no

longer be anxious about it.' (Sjôberg, 1971-72, p. 127). Another very well known

text, 'Examination Text A', that dates back to the Old Babylonian period, deals with

the examination of a scribe in the courtyard of the Tablet-House. Besides the precise
idea that this text provides us with an examination scene, the text uncovers some

accepted teacher-student relationships such as symbolic forms emerging in the dy
namic of the scribal school. The examination covers topics such as the translation

from Sumerian (by that time, a dead language, as mentioned in footnote 22) to Ak

kadian and vice-versa, different types of calligraphy, the explanation of the special

ised language (or jargon) of several professions, the resolution of mathematical

problems relating to the allocation of rations and the division of fields. When the

teacher starts asking questions about the techniques employed in playing musical

instruments, the candidate gives up the examination. He complains that he was not

sufficiently taught. Then the teacher says:

'What have you done, what good came of your sitting here·) You are already a ripe man
and close to being aged' Like an old ass you are not teachable any more. Like withered

grain you have passed the season. I-Iow long will you play around? But. it is still not

late' If you study night and day and work ail the time modestly and without arrogance,

if you Iisten to your colleagues and h:achers, you still can become a scribe' Then you
can share the scribal craf! which is good fortune for its owner, a good angel leading you



a bright eye, possessed by you, and it is what the palace needs.' (Quoted by Lucas,
1979, p. 314).

ln the previous passage we find mentioned explicitly the intensive work that is

expected to be done by the scribe. More importantly still, we also find in the previ
ous quotation clear instances of a symbolic form that emerges as a particular social

student-teacher relationship. The symbolic form is that which forces the student to

show some specific attitudes: s/he is supposed to be modest and without arrogance

as weil as a good listener. By the same token, the same symbolic form allows the
teacher to say what he said in the text. More eloquent is a passage of another text

calied 'Schooldays' (Kramer, 1949) in which the scribe tells us that he is caned by

his teachers for doing unsatisfactory work.

This symbolic form was supported by the scribes' relatives, who encouraged
their sons to follow the teachers' requirements. ln a tablet, the father says to his son:

«Be humble and show humility before your school monitor. When you make a show

ofmodesty, the monitor willlike you.» (Quoted in Lucas, 1979, p. 321).
We do not need to go further into the detail. It suffices to say that the aforemen

tioned scenes clearly suggest that the teaching model relied heavily upon an incon

testable imitation model concentrated on the proving of, among other things, the

replication of passages from literary texts and procedural and computational mathe
matical skills. ln this sense, the formai, semiotical content of the mathematical texts

are but the mirror of the sociocultural web of relations on which schooling and, in

general, ail Babylonian social activities were based. To expect that the scribe pro
duce a mathematical text containing an analytic algebraic explanation of the proce

dure is to expect him/her to do something that was out of ail the encu1turation with
which s/he was provided in the Tablet-House. Explanation is, in fact, a sociocultural

value, not a transcultural item23. Of course, Mesopotamian explanations did exist.
Nevertheless, they were not 1argely based upon deductive ana lytica 1 princip les but

on metaphorical ones. A survey of literary and mythological texts is very enlighten
ing in this respect (see for instance Kramer, 1961a, 1961b).

The case of Diophantus was completely different. From the 5th century BC, ar

guing and explaining were two important social activities that shaped Greek thought.
On the other hand, Diophantus had, at his disposai, an alphabetical language and a

very well-established socially accepted system of producing and transmitting infor
mation out ofwhich books attained an autonomous life24.

Conceming algebra, even though Diophantus could use letters to represent the

unknown he did not. As it is weil established, the use of letters in Diophantus' Ar

ithmetica stand for an abbreviation of the word - hence, contrary to our modem use,
as merely an economic writing device.

Even though he was not probably the first to do this, as suggested by the papyrus

Mich. 620, one of Diophantus' most important semiotic contributions is to be found



in the peculiar use of the expression «arithmos». We previously said that he accom

plished a transcendental act by including indeterminate units into the realm of

calculations. But this is not to what we are referring now. Here we refer to the use of

this expression of the Greek language to designate the algebraic experience that the

concept of unknown carries out with itself. ln the Arithmetica and in the specific

definition of arithmos we found this experience «uttered». While Mesopotamian

scribes used the semiotic experience of everyday !ife and used words like the length
or the width of a rectangle to handle their unknowns (using expressions !ike 'as

much as' or 'the contribution of the length' to refer to what we now call the coeffi

cients of a polynomial), Diophantus transformed the word «arithmos» into a more

general concept. Because of its genera!ity, this concept could apply to a ~reat variety
of situations. The «arithmos» thus became a genuine algebraic symbol 5. Through

this symbol, a numerical assimilating process of (some) geometric algebraic tech

niques was undertaken, leading to a new formulation of old problems and the rising
of new methods in solving new versions of old problems. ln tum, the new methods

also allowed the Greek calculators to tackle new problems: Diophantus' Arithmetica

contains problems which do not have any corresponding version in the algebra em
bedded in the Naïve Geometry, as is the case ofproblems conceming square-squares

and cubo-square categories. Nonetheless, it is important to note that the great gener

alising enterprise was supported by the socially committed Greek conception of

mathematics (further details in Radford, 1996b).
The «arithmos»-symbolism played a particular role in a different semantisation

of problems in the problem-solving phase and led to a more systematic and global

treatment of problems. ln order to illustrate this ideas more precisely, let us consider

problems 27-30 of Book 1 of Diophantus' Arithmetica. There is no doubt that these

problems belong to an early tradition. According to H0yrup (1994, pp. 5-9), these

problems, formulated, of course, in a geometrical language, go back to the survey

ors' Mesopotamian mathematical tradition of the late 3rd millennium Be. These

problems constitute part of a stock of problems that played a role in the rise of the

Old Babylonian mathematics.

Using H0Yrup's notations (modified very !ittle), these problems can be stated as
follows:

27) SI+ S2 = a
s, . S2 = ~

29) s, + S2 = a
QI-Q2 = ~

28) s, + S2 = a
QI + Q2 = ~

30)s,-s2=a
s, . S2 = ~



ln Mesopotamia, problem 27 was solved through the cut-and-paste technique.
Diophantus does not use this technique directly. However, as was mentioned above,

there are traces of the geometrical ideas in the new numerical algebraic problem

solving procedure (see H0yrup, 1985, p. 103-105; Radford, 1996a). Problem 28

appears in tablet BM 13901, problem No. 8 and in YBC 4714, problem No. 1. There

is no direct Mesopotamian evidence ofproblem 29. (However, according to H0yrup,

it is possible that originally problem 9 could be contained in a missing part of Text
V of the Textes Mathématiques de Suse).

While the cut-and-paste technique does not apply to ail those problems in the
same way, the revolutionary concept of the numerical algebraic unknown provides a
similar way of tackling ail these problems. The idea is to take the half of the sum of
the sides added (or subtracted) by a certain number. (As was mentioned above, this
is a procedure at the very cross-roads of geometrical and numerical ideas: see Rad
ford, 1995b). Thus, in problems 27, 28 and 29, Diophantus represents the sought
after numbers as «10 + l 'number'» and «10 - l 'number '» (in modem notations, it
means 10 + X and 10 - x). ln problem 30, the sought-after numbers are chosen as
«1 'number' + 2» and «1 'number' - 2».

On the other hand, syrnbolism shifts the thinking from the figures themselves

and makes it possible to carry out operations that do not have any corresponding
sense with the initial statement of the problem. This is not the case of the cut-and

paste-technique, where it is possible to distinguish the sequence of geometrical
transformations and its link with the original configuration.

The introduction of the «arithmean» symbolic language provides an autonomous
way of thinking -autonomous with regards to the context of the problem. ln contrast,
it requires a new semantisation that has its own difficulties. This is to what Diophan
tus probably refers when he says, at the beginning of Book 1: 'Perhaps the subject
will appear rather difficult, inasmuch as it is not yet familiar (beginners are, as a
mie, too ready to despair of success)' (Heath, 1910, p. 129). Indeed, many of Dio
phantus' Arithmetica Scholia or comments (cf. Allard (ed.), 1983) deal with detailed
explanations about the elementary symbolic treatrnent of the problems. Some of
them use a geometric context to give a sense to the solving procedure. This is the
case of a scholium of problem 26 from book l, which explains the solution of the

equation 25x2 = 200x in terms oftwo rectangles of the same width. (Allard (ed.),
1983, p. 727).

SOME REMARKS FOR TEACHING

The historical itinerary that we have followed in this work provides some

information about past trends in the historical construction of very early algebraic

thinking. These trends can help us to better understand the deep and different

sociocultural and cognitive meanings of algebraic thinking and provide teachers



with new paths to teach algebra in the classroom. ln particular, our historical

epistemological itinerary can shed some light on the didactic problem of how to

introduce algebra in school. Of course, as we have pointed out in previous works, we

do not claim that we must fol1ow the historical path. History cannot be normative for
teaching. There are social and cultural aspects in the development of algebra that we

cannot reproduce in the classroom. Furthennore, these aspects may not be necessary

for our purposes. There are other aspects which could be more interesting, such as

the following:

(1) The epistemological meaning of algebra, i.e., that of mathematical knowl

edge developed around a problem-solving oriented activity, can provide

some insights about the way of introducing and structuring algebra in the
school; and this us to re-think, within a new perspective, the role of prob

lems in teaching algebra.

(2) However, our study of Mesopotamian and Greek algebra clearly suggests

that the specific form in which each algebra was conceived was deeply

rooted in and shaped by the corresponding sociocultural settings. This point

raises the question of the explicitness and the control1ing of the social mean

ings that we inevitably convey in the classroom through our discursive prac
tices.

(3) Our epistemological analysis suggests that algebraic language emerged as a

tool or technique and later evolved socio-cultural1y to a level in which it was
considered as a mathematical object. Usual1y, in the modem curriculum, al

gebraic language appears from the beginning as a mathematical object per

se. Taking into account this result, it is possible to make some changes in the
way of introducing algebraic language in the classroom.

Following some insights of our historical studies of the development of al

gebra (see also Radford, 1995c), we elaborated a teaching sequence whose

goal was to introduce students to algebraic methods based on different semi
otic levels which culminates with the progressive introduction of symbol

letters (Radford and Grenier, 1996).
(4) A fourth point that we can consider, from a teaching point of view, could be

the historical movement of arithmetisation of geometric algebra (which oc

curs in a recursive way through the history of algebra until the pre-modem

epoch). Until now, the algebra embedded in cut-and-paste Naïve Geometry

does not belong to the modem curriculum of mathematics; inspired by this

historical research we were able to successfully develop a teaching sequence

in the classroom that, through cut-and-paste geometry, has been allowing
High-School students to re-discover the formula for second degree equations

(Radford and Guérette, 1996).



(5) Another aspect to consider could be the link between proportional thinking

and algebraic thinking. Ratio and proportions are not presented, in modem

school curricula, as being linked to algebraic thinking in the way that history

suggests it happened. It seems to me that the historical metaphorical link be

tween proportions and algebra is another interesting element to be explored

in the teaching ofmathematics.
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A collection of problems from Tell Hannal shows how to calculate the total priee of some current
items used in commercial business using silver as the 'monetary' unit of goods. Such items included
sesame, dates and lard; see Goetze, 1951, p. 153.
Some such 'non-practical' problems will be discussed in this paper. One ofthem is found at the end of
this section.

As pointed out by Damerow, numbers in Mesopotamian mathematics are not abstract entities; they are
attached to specifie contexts (e.g. weight of objects, grain production). A relative detachment from
the context is suggested, however, by the tables of reciprocals in the early Old Babylonian period (ca.
2000 BC) (see Damerow, 1996, particularly pp. 242-246).
ln what follows, we will represent the numbers in base 60; for instance a number represented by 2" 3'

2 6 11
2x60 +3x60+S+-+-2

60 605° 6'11' means

It is important to note this nuance: Thureau-Dangin was very careful with the philological aspects of
the translations; in contrast, the interpretation of such translations very often had recourse to modern
algebra (see HflYrup, 1996, 7-9). For instance, when discussing one of the problems of the tablet V AT
8389, Thureau-Dangin refers to the equation 40'x-30'y=8'20 and says: 'Le scribe ne formule pas cette
équation, mais il l'a certainement en vue'. (The scribe does not formulate this equation, however, he
certainly has it in view). (Thureau-Dangin, 1938b, p. xx).
As we suggested in the previous section, false quantities were generated as metaphors of true quanti
ties. Here, a new metaphor would be used by the scribes to generate a new concept -that of algebraic
unknown.

We will use modern algebraic notations in some passages of our paper in order to have an idea of the
problems and the methods of solution under consideration. Modern notations are not used as structural
artefacts in our interpretation of ancient mathematics.
Stated, of course, in a Babylonian 'natural' context (e.g. a stone and its weight).

10 The Textes Mathématiques de Suse were translated by Bruins and Rutten (1961). ln these Textes,
there are two problems called problems A and Bof text VII, related to the width and the length of a
rectangle. ln a recent re-interpretation made by HflYrup (!993b), Problem A of Text VIl concerns the

.1(x +.1 y) '10 = x + yequation that, translated into modern notations, reads as foIlows: 7 4 , where
x represents the length and y the width of a rectangle; nevertheless, our modern translation does not



distinguish some of the different conceptualisations between ancient numerical operations and the
modern ones. Keeping this in mind, some of the steps of the translating solution include the following
calculations:

II7[(4-I)x+(x+y)]10=4· (x+y),3x· 10+(x+y)· 10=28· (x+y),k 10= 18· (x+y),x· 10=6· (x+y)
Then, the scribe chooses x=6 and 10=x+y and he arrives at y=4. (For a complete translation see
Heyrup, 1993b). One of the points to be stressed here is the fact that the calculations showed in the
previous sequence are based on an (implicit) analytical procedure: the scribe's calculations comprise
the unknown quantities x, y (as seen in their own mathematical conceptualisation); the unknown quan
tities are considered and handled as known numbers, even though their numerical values are not dis
covered unti 1the end of the process.

II 'J'ai mangé les deux tiers du tiers de ma provende: le reste est 7. Qu'était la (quantité) originaire de ma
provende?' (Thureau-Dangin, 1938b, p. 209).

12 The problem of the transmission of algebraic knowledge and the sources of Greek (nul11erical and
geometrical) algebra has been studied by J. Heyrup in terms of sub-scientific mathematical traditions.
(see, e.g., Heyrup, 1990a).

lJ The problem of whether a conceptual organisation is scientific or not is evidently a cultural decision.
ln the case of the Alexandrian algebra of the 3rd century B. c., it is hardly possible to ascribe to Dio
phantus the whole merit ofbuilding such a theory (Klein, 1968, p. 147). Nevertheless, we can say that,
in ail likelihood, his contribution was conclusive to this enterprise.

14 Freeman, 1956, fragment 4, p. 74.
IS When reading this quotation we have to keep in mind that Heath's translation is tainted by a modern

outlook. Diophantus never spoke about 'negative terms'. Diophantus spoke rather of leipsis, i.e. of de
ficiencies in the sense of missing objects; this is why we might remember that a leipsis do es not have
an existence per se but was always related to another bigger term of which it is the missing part.

,. For a complete translation of the problem, see Heath, 1910, p. 132 or Ver Eecke, 1926, pp. 12-13.
17 This problem can be solved by the method of two false positions. Given that this method was invented

later, we will not discuss it here.
18 Heyrup's translation of the problem-solving procedure is the following: '1 the projection you put

down. The halfof 1 you break, 1/2 and 1/2 you make span [a rectangle, here a square], 1/4 to 3/4 you
append: 1, makes 1 equilateral. 1/2 which you made span you tear out inside 1: 1/2 the square line.'
(Heyrup, 1986, p. 450).

19 Although the sign could be written in a stylised format, only a few variants were allowed. See Green,
1981, p. 357.

20 There were also female scribes, although, in alllikelihood, they were not a legion' Su ch a scribe is the
princess Ninshatapada (see Hallo, 1991).

21 For an example, see the solution to the problem No. 1, tablet BM 13901, note 18.
Tl Jt Îs important to note that although Sumerian language was a dead language in the Girl Babylonian

period, in mathematical texts the scribes kept using some Sumerian logograms and, in repeated in
stances, they added phonetic Akkadian complements to some logograms as weil. This rhetorical twist
indeed shows a deep mastering of a very elaborated writing.

23 Note, however. that it does not mean that the scribes did the calculations by role. Certainly, an under
standing of what they wrote was part of the task of leaming (some tablets show, for instance, that a
good scribe was supposed to understand what s/he wrote).

24 It would be teleologically erroneous to think that the non-alphabetical cuneiform language of the Old
Babylonian period was a delaying factor to the emergence of algebraic symbols in the Ancient Near
East. The cuneiform language was a marvelous tool to crystallise the experiences, the meanings and
conceptualisations of the people that spoke Sumerian and later Akkadian. Alphabetic languages corre
spond to new ways to see, describe and construct the word. One language is not stricto sensu better
than the other: they are just different (For a critique of the alphabetical ethnocentric point of view, see
Larsen 1986, pp. 7-9).

25 ln the Iight of this discussion, it is easy to realise that il is an anachronism to see the development of

algebra in terms of Nesselmann's three well-known stages: rhetorical, syncopated and symbolic (Nes
selmann, 1842, pp. 301-306); further details in Radford, 1997


