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1. INTRODUCTION

More than a century ago, Hieronymus Georg Zeuthen wrote a book about the history
of mathematics (Zeuthen, 1902). Of course, this was not the first book on the topic, but
what made Zeuthen’s book different was that it was intended for teachers. Zeuthen
proposed that the history of mathematics should be part of teachers’” general educa-
tion. His humanistic orientation fitted well with the work of Cajori, 1894 who, more
or less by the same time, saw in the history of mathematics an inspiring source of
information for teachers. Since then, mathematics educators have increasingly made
use of the history of mathematics in their lesson plans, and the spectrum of its uses
has widened. For instance, the history of mathematics has been used as a powerful
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tool to counter teachers’ and students” widespread perception that mathematical
truths and methods have never been disputed. The biographies of several mathe-
maticians have been a source of motivation for students. By stressing how certain
mathematical theories flourished in various countries, the diverse contributions of
various cultures to contemporary mathematics becomes evident. Specialized study
groups have emerged in the past years as a result of the increasing interest in the history
of mathematics in educational circles. Two of these are the Commission INTER-IREM
Epistemologie et Histoire des Mathématiques in France and the International Study
Group on the Relations between History and Pedagogy of Mathematics, which is related to
International Commission on Mathematical Instruction JICMI). In addition, regular
conferences are organized, such as the European Summer Universities on the History
and the Epistemology in Mathematics Education (see Lalande, Jaboeuf, & Nouazé,
1995, and Lagarto, Vieira, & Veloso, 1996, for proceedings). Concomitantly, an impor-
tant number of books are now available to help teachers use the history of mathemat-
ics (Calinger, 1996, Chabert, Barbin, Guillemot, Michel-Pajus, Borowczyk, Djebbar, &
Martzloff, 1994; Dhombres, Dahan-Dalmedico, Bkouche, Houzel, & Guillemot, 1987;
Fauvel & van Maanen, 2000; Katz, 2000; Reimer & Reimer, 1995; Swetz, Fauvel, Bekken,
Johansson, & Katz, 1995).

Instead of offering an overview of the different domains in which the pedagogical
use of the history of mathematics is now ramified, we want, in this chapter, to focus
on something that Cajori started and in which mathematics educators interested in
the history of mathematics are still involved. That is, in considering history not only
as a window from where to draw a better knowledge of the nature of mathematics
but as a means to transform the teaching itself. The specificity of this pedagogical
use of history is that it interweaves our knowledge of past conceptual developments
with the design of classroom activities, the goal of which is to enhance the students’
development of mathematical thinking.

Cajori’s 1894 ideas have led us to developments that he could not have suspected.
Indeed, Cajori adopted a positivistic view of the formation of knowledge. He saw
knowledge as an objective entity that grows gradually and cumulatively. His reading
of the history of mathematics was framed by viewing history as an unfolding pro-
cess. The direction or completion of the process guaranteed by the idea of progress—
an idea underpinning the Enlightenment philosophy and attitudes toward life from
which modern thought arose. Nonpositivistic views about the formation of know-
ledge were later elaborated by philosophers and epistemologists such as Bachelard,
Foucault, and Piaget, among others, and by anthropologists such as Durkheim, Levy-
Bruhl, and Lévi-Strauss, to mention but a few. Bachelard presented an interpretation
of the formation of knowledge in terms of ruptures and discontinuities. Piaget was
interested in explaining genetic developments in terms of stages and the intellectual
mechanisms allowing the passage from one level to another. Foucault was opposed
to the conception of history as a date-labeling practice and investigated the problem
of the constitution of knowledge in terms of the conditions of its emergence, which
he related to the different spheres of human activity. Bachelard, Foucault, and Piaget
had different goals, and thus their projects differed. But what is important for our
discussion here is that, contrary to what Cajori and many other positivist thinkers
believed, knowledge in general and mathematical knowledge in particular cannot be
taken as an unproblematic concept. Behind a concept of knowledge there is an epis-
temological stance, and this epistemological stance conditions our understanding of
the formation of students” mathematical thinking as it conditions the interpretation
of historical conceptual developments (Grugnetti & Rogers, 2000; Radford, Boero, &
Vasco, 2000). Nevertheless, the study of the development of students” thinking and
of the conceptual development of mathematics belong to two different domains—
the psychological and the historical, respectively. Each has its specific problems as
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well as the tools with which to investigate them. Students” conceptualizations can
be investigated through classroom observations, interviews, tests, and soforth. The
same cannot be done in the historical domain, where historical records are the only
available material for study. The difference in methodologies in both domains is, in
fact, a token of more profound differences. These cannot be ignored in the context
of a pedagogical use of the history of mathematics as a useful tool to enhance the
development of students” mathematical thinking. Despite their differences, the psy-
chological and historical domains need to be weighed and articulated in a specific
way. One of today’s more controversial themes concerns the terms in which such an
articulation must be understood. More specifically, the question is how to relate the
development of students” mathematical thinking to historical conceptual mathemat-
ical developments. Psychological recapitulation, which transposes the biological law
of recapitulation, claims that in their intellectual development our students naturally
traverse more or less the same stages as mankind once did; it has been taken as a guar-
antee (sometimes implicitly) to ensure the link between both domains. In its different
variants, however, psychological recapitulation has been subject to a deep revision
recently, in part because of the emergence of new conceptions about the role of culture
in the way we come to know and think.

The purpose of this chapter is to discuss in some detail the basic problems referred
to in this introduction. In the next section, we deal with psychological recapitulation
and mention some of the current arguments against it. In section 3, we examine key
ideas about ontogenesis and phylogenesis as found in the works of Piaget and in the
works of Vygotsky. In section 4, we present some paradigmatic examples of mathe-
maticians who commented on phylogenesis and its relation to ontogenesis. Section 5
focuses on a particular interpretation of the recapitulation law that led to the so-called
“genetic approach”, which had an obvious impact on early mathematics education.
In section 6, we discuss some examples of teachers who take into consideration the
history of mathematics to improve their teaching; determining how interpretations of
the recapitulation law articulate the teachers’ goals and actions guides our discussion.
Section 7 provides a brief account of a few current approaches in contemporary math-
ematics education that relate to the history of mathematics regarding either theoretical
or practical links between the development of students mathematical thinking and
historical conceptual developments. In the last section, we offer a critical assessment
of the law of recapitulation and recommend ideas for conceptual and applied research
in the 21st century regarding historical and ontogenetic developments in mathematics
education.

2. FROM BIOLOGICAL TO PSYCHOLOGICAL
RECAPITULATION

The way in which people perceived psychological recapitulation at the beginning
of the 20th century was linked to the way they perceived themselves in the overall
view of the world. As long as humans thought of themselves as essentially differ-
ent from animals and plants, no relation in terms of ancestry could be advocated.
Even in the early 18th century, a common scholarly view to explain the origin of
species and to understand the formation of living things was that species came from
those beings fortunate enough to survive the deluge, as indicated in the Genesis (see,
e.g., Osborn, 1929), by finding refuge on Noah’s ark. But with the appearance of the
early 19th-century philosophy of nature, humans came to join the greater kingdom
of species. In their broader sense, however, recapitulationist ideas data back, to the
pre-Socratic thinkers. They did not state them in terms of a telescoping or condensed
process of lower life that culminates with humans. Often their reference point was
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the cosmos. Thus, Empedocles believed that the growth of the embryo echos in a
foreshortened way the cosmogonic process: The embryo is submerged into amniotic
fluid that evokes the originally fluid earth (de Santillana, 1961, p. 114). During the
18th and early 19th centuries, a vigorous debate separated two opposing schools with
regard to the concept of recapitulation. One of them, which became known as pre-
formation theory, stated that ontogenesis was the unfolding or growing of preformed
structures, whereas the other school adopted a more dynamic stance, arguing that the
embryo was neither the exact miniature of the developed species nor the unfolding
of preformed structures, but a being in a state of development. The “causes” orig-
inating embryo’s the unfolding or the changes were variously interpreted. Charles
Bonnet (1720-1793), usually recognized as one of the leaders of the preformation-
ists, saw change as coming from an affectionate God who had ordered the world
according to increasing perfection and progress. Whereas in the early-19th century
Naturphilosophen attributed development to a “natural” final cause, Lamarck and
Darwin envisioned a new theory that replaced the philosophical idea of final cause
with an efficient cause—individual development. (For a detailed discussion of prefor-
mationist and Naturphilosophen ideas, see Gould, 1977.) Indeed, from the mid-19th
century onward, the “causes” were seen in the context of the theory of evolution.
“Heredity and adaptation are, in fact, the two constructive physiological functions of
living things,” wrote Haeckel (1912, p. 6), who, in one of the most famous statements
ever made in the realm of anthropogenesis (which he modestly called the fundamental
law of biogeny), declared that

The series of forms through which the individual organism passes during its develop-
ment from the ovum to the complete bodily structure is a brief, condensed repetition of
the long series of forms which the animal ancestors of the said organism, or the ancestral
forms of the species, have passed through from the earliest period of organic life down
to the present day. (pp. 2-3)

Haeckel’s law was more than the simple statement of a condensed repetition of steps.
What he was suggesting was that embryos of man and dog, at a certain stage of their
development, are almost indistinguishable. Indeed, to take one of Haeckel’s favorite
examples, “the human gill slits are (literally) the adult features of an ancestor” (Gould,
1977, p. 7).

How, then, was the discussion about the biological growth of humans transferred
to the psychological domain? It was Haeckel who, after discussing the nervous sys-
tem, said “we are enabled, by this story of the evolution of the nervous system, to
understand at length the natural development of the human mind and its gradual unfold-
ing” (1912, p. 8, italics as in the original). A sharper formulation was the following:
“the psychic development of the child is but a brief repetition of the phylogenetic evo-
lution” (Haeckel quoted by Mengal, 1993, p. 94). The adoption of the psychological
version of biological recapitulation served as a general framework to conceive the
functioning of child psyche as something traveling the same path as his or her ances-
tors. For instance, the child was seen as behaving as humans in previous stages of the
chain of evolution (e.g., suich as having, in an early stage of his or her development,
an “animist” view of nature, that is, that immaterial forces animate the universe).

Psychological recapitulation endorses a peculiar view of history and development.
Concerning development, for Bonnet and the preformists, there was no development,
strictly speaking, but only growing or unfolding.' Environment cannot alter the pre-
formed structures and their growth. For evolutionary-based recapitulation theories?,
in contrast the environment is supposed to play® in the development of species a
role. The individual is seen as an organism adapting to his or her environment;
in the interplay between individual and environment, some of the biological and
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psychological functions may develop, whereas others may be lost according to the
natural selection.

As for history, in contrast to views that conceived a world that underwent different
creations, Bonnet saw the world as created at one time, with its whole history encap-
sulated within it. History was therefore the unfolding of a predetermined plan. The
concept of history is much more problematic for recapitulationists. Indeed, from a
theoretical point of view, history and recapitulation become difficult to reconcil be-
cause, on one hand, Haeckel’s psychological recapitulation supposes that present in-
tellectual developments are to some extent a condensed version of those of the past. On
the other hand, natural selection is presented as a function of the environment against
which individuals act. For recapitulation to be possible, therefore, such an environ-
ment must remain essentially the same, which obvicusly i not the case, Given that the
environment changes, it becomes difficult to maintain that the children’s intellectual
development will undergo the same process as the one children experienced in the
past. The variability that natural selection imposes on the course of events in history
conflicts with the idea of recapitulation as condensed repetition of some intellectual
aspects registered in past history. Indeed, this point was recognized as a weakness.
Werner (1957), for instance, advocated contextual factors and argued that it is impos-
sible to equate a certain intellectual stage of a child in a modern society to the stage an
adult could have reached in a ancient society because the respective environunents, as
well as the genetic processes involved in them, are completely different (see Radford,
1997a). Elias also mentioned the differences that necessarily result as a consequence
of variations in cultural settings. Whereas in traditional societies children participate
directly in the life of the adults earlier and their learning is done 77 sifu (as apprentices),
“modern” children are instructed indirectly in mediating institutions, or schools (Elias,
1991, pp. 66-67). Consider memory, an example that is addressed neither by Werner
nor Elias but which conveniently clarifies the previous ideas. As many anthropolog-
ical accounts clearly show (see e.g., Lévy-Bruhl, 1928}, memory plays a central role
in illiterate societies. In contrast, sign systems related to writing in literate societies
dispense with memory to a certain and fundamental extent. They create a different
way to handle and distribute knowledge and information between the members of
the society and shapes attitudes about how to scrutinize the future (see Lotman, 1990).

The theoretical difficulties encompassing the crude version of psychological reca-
pitulation encouraged new reflections to find more suitable explanations concerning
the relations between phylogenesis and ontogenesis. In the next section, we will dis-
cuss two different views that have been influential in the use of history in mathematics
education.

3. PIAGET AND VYGOTSKY ON ONTOGENESIS
AND PHYLOGENESIS

Piaget was interested in understanding the process of the formation of knowledge.
To do so, he considered knowledge as something that can be described in terms of
levels and strived to describe those levels, as well as the passage from one level to a
more complex one. He said, “The study of such transformations of knowledge, the
progressive adjustment of knowledge, is what I call genetic epistemology” (Piaget
cited in Bringuier, 1980, p. 7). As a reaction to the simplistic psychological version of
recapitulationand the positivist view of knowledge that we mentioned in the introduc-
tion, Piaget and Garcia elaborated the concept of genetic development. They envisioned
the problem of knowledge in terms of the intellectual instruments and mechanisms
allowing its acquisition. According to Piaget and Garcia, the first of those mechanisms
is a general process that accounts for the individual’s assimilation and integration of
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what is new on the basis of his or her previous knowledge. In addition to the assim-
ilation mechanism, they identified a second mechanism, a process that leads from
the intraobject, or analysis of objects, to the interobject, or analysis of the transforma-
tions and relations of objects, to the transobject, or construction of structures. This
epistemological viewpoint led them to revisit the parallelism that recapitulationists
had emphasized. Therefore, Piaget concluded, “We mustn’t exaggerate the parallel
between history and the individual development, but in broad outline there certainly
are stages that are the same” (Bringuier, p. 48). The two mechanisms were hence con-
sidered as invariables, not only in time but also in space. That is, we do not have to
specify what they are in a certain geographical space at a particular time because they
do not change from place to place or from time to time. They are exactly the same,
regardless of the period of history and the place of the individuals.

In modern mathematics, at the level of algebraic geometry, of quantum mechanics,
although it’s a much higher level of abstraction, you find the same mechanisms in
action—the processes of the development of knowledge or the cognitive system are
constructed according to the same kinds of evolutionary laws. {(Garcia in Bringuier,
1980, pp. 101-102)

Thus, when Piaget and Garcia investigated the relations between ontogenesis and
phylogenesis, they did not seek a parallelism of contents between historical and psy-
chogenetical developments but of the mechanisms of passage from one historical
period to the next. They tried to show that those mechanisms are analogous to those
of the passage from one psychogenetic stage to the next.

The two mechanisms of passage discussed by Piaget and Garcia have a different
theoretical background. The second, that of the intra-, inter- and trans-objectual re-
lations, obeys a structural conception of knowledge and reflects the role that mathe-
matical and scientific thinking played in Piaget’s work. As Walkerdine noted, “In the
work of Piaget, an evolutionary model was used in which scientific and mathematical
reasoning were understood as the pinnacle of an evolutionary process of adaptation”
(Walkerdine, 1997, p. 59). The first one, the assimilation mechanism, has its roots in
the conception of knowledge as the prolongation of the biological nature of the indivi-
duals: “The human mind is a product of biological organization, a refined and superior
product, but still a product like another” (Piaget in Bringuier, 1980, p. 108).

Both intellectual mechanisms of knowledge development embody a general con-
ception of rationality that has been contested by some critics who find missing, among
other things, a more vivid role of the culture and the social practices in the formation
of knowledge. For instance, the epistemologist Wartofsky, who has stressed an inti-
mate link between knowledge and the activities from which knowledge arises and is
used, said:

We are, in effect, the products of our own activity, in this way; we transform our own
perceptual and cognitive modes, our ways of seeing and of understanding, by means
of the representations we make. ... Theoretical artifacts, in the sciences, and pictorial or
literary artifacts, in the arts constitute the a priori forms of our perception and cogni-
tion. But contrary to the ahistorical and essentialist traditional forms of Kantianism, I
propose instead that it is we who create and transform these a priori structures. Thus,
they are neither the unchanging transcendental structures of the understanding, nor
only the biologically evolved a priori structures which emerge in species evolution
(as, for example, Piaget and the evolutionary epistemologists suggest). Piaget’s dy-
namic, or genetic structuralism is important here, of course. His dictum, “no genesis
without structure, no structure without genesis,” suggests the dialectical interplay of
the practical emergence and transformation of structures with the shaping of our expe-
rience and thought by structures. But the domain of this genesis I take to be the context
of our social, cultural and scientific practice, and not that of biological species-evolution
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alone.. .. In a sense, then, our ways of knowing are themselves artifacts which we our-
selves have created and changed, using the raw materials of our biological inheritance.
(Wartofsky, 1979, p. xxiii)

Vygotsky, in many writings, dealt with the problem of recapitulation and, like
Piaget, believed that the understanding of ontogenesis and phylogenesis had to be
based on a deep understanding of our biological nature. (This is clear, for instance, in
his book Speech and Thinking, as well as in the influence he had on his student Luria
and the huge amount of physiological research that the latter conducted.) Instead of
posing the problem of the formation of knowledge in terms of universal and atemporal
mechanisms functioning beyond culture, however, he saw the cognitive functions
allowing the production of knowledge as inevitably overlapping with the context in
which individuals act and live. His basic distinction between lower and higher mental
functions is reinforced by the idea that the former belong to the sphere of the biological
structure, whereas the latter are intrinsically social. Thus, in a passage from Tool and
Symbol in Child Development, when discussing the problem of the history of the higher
psychological functions, Vygotsky and Luria commented:

Within this general process of development two qualitatively original main lines can
already be distinguished: the line of biological formation of elementary processes and
the line of the socio-cultural formation of the higher psychological functions; the real
history of child behaviour is born from the interweaving of these two lines. (Vygotsky &
Luria, 1994, p. 148)

The merging of the natural and the sociocultural lines of development in the intellec-
tual development of the child definitely precludes any recapitulation:

In the development of the child, two types of mental development are represented
(not repeated) which we find in an isolated form in phylogenesis: biological and his-
torical, or natural and cultural development of behavior. In ontogenesis both processes
have their analogs (not parallels).... By this, we do not mean to say that ontogenesis
in any form or degree repeats or produces phylogenesis or is its parallel. We have in
mind something completely different which only by lazy thinking could be taken to be
a return to the reasoning of biogenetic law. (Vygotsky, 1997, p. 19)

For Vygotsky even the elementary intellectual functions of the individual are in-
trisically human, acquired through the activities and actions on which are based the
intercourse between individuals and between people and objects. One of the cen-
tral reasons for this is that human activities are mediated by diverse kinds of tools,
artifacts, languages, and other systems of signs which, Vygotsky argued, are a consti-
tutive part of our cognitive functions. Most important, these systems of signs, as well
as tools and artifacts, are much more than technical aids: They modify our cognitive
functioning. The knowledge produced by the individuals hence becomes intimately
related to the activities out of which knowledge arises and the conceptual and material
“cultural tool kit” (to borrow Bruner’s expression, see Bruner, 1990) with which the
individuals are equipped. Of course, it does not mean that with every new generation,
all knowledge must be constructed anew. As Tulviste (1991) noted, whereas rats are
still doing what they did centuries ago, humans have, from one generation to the next,
assimilated, produced, and passed on their knowledge. During this process, humans
have changed their activities and the way in which they think about the world. In
Vygotsky’s view, knowledge appears as an individual and social creative reappropri-
ation and coconstruction carried out using conceptual and material tools that culture
makes available to its individuals. In turn, in the course of this process, the previous
tools and signs may become modified, and new ones may be created. It is in this
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sense that tools and concepts have embodied the social characteristics from which
they arose, and their insertion into other activities allows their transformation and
eventually their growth. Because activities, sign use, and attitudes toward the mean-
ing of scientific inquiry do not necessarily remain the same throughout time, changes
are effected in phylogenetic lines (and the plural of lines needs to be emphasized here)
serving as the historicocultural starting point to new genetic developments. Epista-
mologica reflexions have then to evidence the relation between cognitive context and
action. As Wartofsky pointed out:

If, in fact, our modes of cognitive practice change with changes in our modes of produc-
tion, of social organization, of technology and technique, then the connection between
cognition and action, between theoretical and applied practice, between consciousness
and conduct, has to be shown. (Wartofsky, 1979, p. xxii)

Orne implication of the previous remarks for the use of the history of mathematics
in education is that the study of recapitulation can be advantageously replaced by
the contextual study of the social elements in which the historical geneses of concepts
are subsumed. This can be accomplished through a careful investigation of the cul-
tural symbolic webs shaping the form and content of scientific inquiry and the ways
in which mathematical concepts are semiotically represented (Radford, 1997a, 1998,
1999a, 2000a). We return to this point in section 7.

4, INTERPRETATION OF RECAPITULATION
LAW BY MATHEMATICIANS

In the period when the treatises of Zeuthen and Cajori appeared, the history of math-
ematics was growing as a scientific discipline. The first journals dealing exclusively
with the history of mathematics were appearing in that period. We have extensive
evidence that mathematicians and mathematics educators were both looking at the
history of mathematics with great interest. Mathematics educators were creating new
areas of work in their field linked to changes in societies. As discussed in Furinghetti
(2000) and in Furinghetti and Somaglia (1998), the history of mathematics was consi-
dered a suitable means to find efficient ways of teaching in different situations. Among
mathematicians, the axiomatization and the foundational works were undertaken.
These themes were addressing mathematicians’ attention to reflections on the nature
of mathematics and on the activity of doing mathematics. The history of mathematics
was considered a field that offered inspiration to discuss these kinds of problems. In
this context, we consider some interpretations of recapitulation law made by impor-
tant mathematicians.

In the firstissue (1899) of L'enseignement mathématique, an importantjournal devoted
to the teaching of mathematics, the eminent mathematician Henri Poincaré clearly
stated his position on the relations between conceptual and historical developments:

Without a doubt, it is difficult for a teacher to teach a reasoning that does not satisfy
him completely.... But the teacher’s satisfaction is not the sole purpose of teaching. ..
above all one should be concerned with the student’s mind and of what we want him
to become.

Zoologists claim that the embryonal development of animals summarizes in a very
short time all the history of its ancestors of geologic epochs. It seems that the same
happens to the mind’s development. The educators’ task is to make children follow
the path that was followed by their fathers, passing quickly through certain stages
without eliminating any of them. In this way, the history of sciences has to be our guide.
(Poincaré, 2899, p. 159; our translation)
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Poincaré gave examples of concepts to be taught at an intuitive stage before presenting
them rigorously. Among these examples were fractions, continuity, and area. As far as
we know, Poincaré never used his ideas on the efficacy of recapitulation law directly
with teachers. This makes Poincaré’s position different from that of Felix Klein, another
supporter of the use of history in mathematics in teaching. In contrast, Klein applied
his ideas in courses for prospective teachers and in related texts that he wrote.

Klein supported the German translation of the famous book A study of Mathematical
Education by Benchara Branford (1921) in which, according to Fauvel (1991, p. 3), the
theory of recapitulation “reached its apogee.” This can be considered evidence of
Klein's agreement to the recapitulation law (Fauvel, 1991, p. 3). Nevertheless, from
what Klein wrote in his articles and books (see Klein, 1924), we understand that
the application of the law was not advocated in a literal sense. As in the case of
Poincaré, his opinion on the use of history was born of his wish to abolish the use
of mathematical logic and the excesses of rigor advocated by some of his colleagues.
Klein was interested in the dichotomy of “intuition versus rigor” and, as far as school is
concerned, was in favor of intuition. He singled out the history of mathematics asbeing
the suitable context for bringing intuition back into the teaching and learning process:

I maintain that mathematical intuition ... is always far in advance of logical reasoning
and covers a wider field. ... I might now introduce a historical excursus, showing that
in the development of most of the branches of our science [mathematics], intvition was
the starting point, while logical treatment followed. This holds in fact, not only of the
origin of the infinitesimal calculus as a whole [this issue was discussed at the beginning
of Klein’s paper] but also of many subjects that have come into existence only in the
present [19th] century. (Klein, 1896, p. 246)

Klein claimed that in school, as well as in research, the phase of formalization must
be preceded by a phase of exploration based on intuition.

We find an analogous statement in a secondary school geometry book written
by a famous Italian mathematician, Francesco Severi, which clearly refers to school
practice:

We need to take inspiration from the principle that in learning new notions, the mind
tends to follow a process analogous to that according to which science has developed.
One who is aware of the value of foundation theories [in Italian critica dei principi]
does not make the dangerous mistake of giving to the elementary teaching a critical
and excessively abstract style. It is necessary to know foundation theories for personal
intellectual maturity; but in the elementary teaching they are not to be considered as a
pedagogical means. {Severi, 1930, p. IX; our translation)

Both Klein and Severi do not clearly state what “intuition” means for them, but both
state to what intujtion is opposed: rigor, excessive abstraction, and formal logic used
at the beginning of the presentation of a mathematical notion. (It may be interesting to
note that Severi, famous during the first half of the 20th century, is one of the scholars
of the Italian school of algebraic geometry who based his results on intuition to such
a degree that these were published without being careful verified by a mathematical
proof, as reported by Hanna, 1996).

5. THE GENETIC APPROACH

Using the history of mathematics in teaching does not necessarily entail a direct as-
sumption of the recapitulation law; it also may be used in the so-called genetic approach
to teaching. The term “genetic” is an ambiguous one because it is used with different
meanings. In particular, in the foundation literature, the term genetic method is used
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in contrast to axiomatic method. David Hilbert probably introduced this term, which
was popularized by Edward V. Huntington. Before Hilbert, we find other uses of the
word “genetic.” Immanuel Kant stated that all mathematical definitions are genetic;
after Kant, the term “genetic definition” is present in all major logic treatises.

In addition to its use among mathematicians and philosophers, we find the word
“genetic” in other fields of research. Piaget and Garcia used it in their epistemological
studies. As to mathematics education, Ed Dubinsky, who dealt with genetic decom-
position, used the word.

Here we are concerned with the word “genetic” as it is used in connection with
history. In the 1920s the idea of a genetic principle was taking shape, as evidenced by
the work of N. A. Izvolsky.!

Gusev and Safuanov (2000) report that, according to Izvolsky, nor teachers nor
textbooks try to explain the origin of geometrical theorems. He suggested that, when
attempts to do this are done, students see geometry in a different way. Moreover
sometimes students themselves guess that a given theorermn was not originated by a
mere wish of the teacher or textbooks” authors, but by questions arisen in previous
works. It happens that students try to imagine the origin of a theorem. According to
Izvolsky, even if their hypotheses are not correct from the historical point of view, this
approach to the teaching of geometry is valuable.

The idea of a genetic approach later took a definite form in a work by Otto Toeplitz
that he wrote to describe a method of presenting analysis to university students.? The
following passage illustrates the ideas underlying the genetic method:

Regarding all these basic topics in infinitesimal calculus which we teach today as canon-
ical requisites, e.g., mean-value theorem, Taylor series, the concept of convergence, the
definite integral, and the differential quotient itself, the question is never raised “Why
$0?” or “How does one arrive at them?” Yet all these matters must at one time have been
goals of an urgent quest, answers to burning questions, at the time, namely, when they
were created. If we were to go back to the origins of these ideas, they would lose that
dead appearance of cut and dried facts and instead take on fresh and vibrant life again.®

Burn explains in this way Toeplitz’s ideas:

The question which Toeplitz was addressing was the question of how to remain rigorous
in one’s mathematical exposition and the teaching structure while at the same time
unravelling a deductive presentation far enough to let a learner meet the ideas in a
developmental sequence and not just in a logical sequence. While the genetic method
depends on careful historical scholarship it is not itself the study of hustory. For it is
selective inits choice of history, and it uses modern symbolism and terminology (which
of course have their own genesis) without restraint. (Burn, 1999, p. 8)

It is not by chance that this alternative approach developed in the domain of teach-
ing calculus. It is in this domain where the notion that learning mathematics takes
place in a sequence predetermined by mathematical logic has shown its pedagogical

TNikolai Alexandrovich Izvolsky was bom in 1870 in Tula, Western Russia. He worked as a teacher
at the 2nd Moscow Military School, and from 1922, he was a professor at the 2nd Moscow State Uni-
versity (now Moscow State Pedagogical University). He wrote papers on mathematics education and
some textbooks in arithmetic, algebra, and geometry. Izvolsky died in Yaroslavi in 1938. The authors
are grateful to Professor Idlar Safuanov from the Pedagogical Institute of Naberezhnye Chelny for the
information he kindly provided concerning the life of Izvolsky.

2A complete study of the genetic method as intended by Toeplitz can be found in Schubring (1978).

3This passage, taken from Jahresbericht der deutschen mathematischen Vereinigung, XXXVI, 1927,
88-100, is reprinted in 1963 in the English version of Toeplitz’s treatise The calculus, a genetic approach.
The University of Chicago Press, Chicago London, 1963.
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limitations. Indeed, when organized around their logical basis, the definitions of the
main concepts of calculus (integrals, limits, derivatives) are abstract, and therein lies
the burden of formal rules and theorems. Students have difficulty grasping the mean-
ing of that with which they are asked to work. At present there are projects (not based
on history) that take into account these difficulties and organize the teaching of cal-
culus according to different patterns. (See, for example, the Harvard project based on
giving an informal, operative approach to concepts in Hughes-Hallet et al., 1994).

What Toeplitz proposed is realistic and may be considered a compromise between
the two ways of thinking about teaching mathematics, the logical versus developmen-
tal sequences. Toeplitz’s historically based approach aims to provide a slow process
of understanding that the student performs through a sequence of steps. Because
Toeplitz’s aim is to provide teaching materials that facilitate the learning of calculus,
the main concern of the author is not to teach history, but to find learning sequences.
Burn (1999) elaborated on these ideas. If we analyze Toeplitz’s proposals or the more
recent ideas of Burn, we may find an example of the history of mathematics used as a
key element in the construction of a teaching sequence (on calculus) from intuition to
logical deduction. The role of history is therefore that of providing materials on which
to develop intuition. The presentation of the historical materials is not shaped accord-
ing to recapitulationist principles because it uses modern symbols, verbal expressions,
and cultural tools that are different from those of past authors.

Anolder example of the use of the genetic method (intertwined with a naive heuris-
tic approach) is in the treatise on geometry by Alexis-Claude Clairaut (1771). The
preface of his book is an early example of predidactic literature. Its importance lies in
the traces of Clairaut’s thought that can be found in works on mathematics education
through the 20th century. Clairaut wrote:

Even if geometry is abstract in itself, we nonetheless must agree that the difficulties
suffered by beginners come mostly from the way it is taught in usual treatises. They
always start with a great deal of definitions, questions, axioms, and preliminary prin-
ciples, which only seem to promise dry issues for readers. ... To avoid this dry quality
that is naturally linked to the study of geometry, some authors put examples after each
proposition to show it is possible to do them; but in this way, they only prove the use-
fulness of geometry without making it any easier to learn. Because each proposition
is presented before its use, the mind reaches concrete ideas after having toiled with
abstract ideas. Having realized this fact, I intended to find out what may have given
birth to geometry and tried to explain principles with the most natural methods, which
Isuppose were adopted by the first inventors, while trying to avoid the wrong attempts
they had necessarily made. (Clairaut, 1771, pp. 2—4; our translation)

According to Glaeser (1983), Clairaut contributed greatly to the introduction of the ge-
netic method. Glaeser commented on Clairaut’s work with the following observations:
“Giving up the dogmatic exposition, and to follow the true historical development of
discovery, this method consists on imagining a road that learned peoples “could have
followed”! Thus this is pretense education”. {(Glaeser, 1983, p. 341, our translation)

In spite of Glaeser’s criticism, Clairaut’s attempts present interesting features, even
more so if we consider that in the period when this author conceived his project, the
paradigm of geometrical teaching was based on the hypothetical-deductive Euclidean
method. If we compare the passage from Toeplitz’s book and Clairaut’s passage, we
see an extraordinary coincidence of intentions and didactic observations (i.e., the idea
of “dryness” that is present in the work of both authors).

Freudenthal (1973) provided an interpretation of the genetic method:

Urging that ideas are taught genetically does not mean that they should be presented in
the order in which they arose, not even with all the deadlocks closed and all the detours
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cut out. What the blind invented and discovered, the sighted afterwards can tell how
it should have been discovered if there had been teachers who had known what we
know now. ... It is not the historical footprints of the inventor we should follow but
an improved and better guided course of history. (Freudenthal, 1973, pp. 101, 103; our
italics)

Freundenthal termed this way of using history “guided reinvention.” It implies an
active and aware participation of the teacher in designing and carrying out teaching
experiments with history.

6. THE HISTORY OF MATHEMATICS IN THE
CLASSROOM FROM THE TEACHER’S POINT OF VIEW

We have argued elsewhere (Furinghetti, 1997) that to study the applications of the
history of mathematics in the classroom, we need a systemic net of experiments to
analyze. For this reason, one of the authors (E F.) has constituted a permanent monitor
to keep track of the use of history in mathematics teaching in Italy. This means that
teachers experimenting with the use of the history of mathematics, or only wishing to
do so, are invited to contact the monitor and to discuss their ideas. In this way, it has
been possible to create a file containing a range of different situations. The examples
that we shall present in what follows come from these data.

First, we report on a workshop of teachers held by Jan van Maanen in Italy to
present and discuss the ICMI Study document, “The role of the history of mathe-
matics in the teaching and learning of mathematics,” together with Italian researchers
in mathematics education and high school teachers. Teachers participating in the
workshop were asked if they use history in their classrooms. The answer, in general,
was negative because of the constraints of the school system. Nonetheless, all the
teachers expressed the strong interest in using it if they were given the opportunity.
When asked to explain why they consider the use of history fruitful, the answer
was something echoing—usually unintentionally—the recapitulation law. Some of
the paradigmatic statements (quoted literally) include the following: “The students’
development of concepts follow the historical sequence,” “The historical genesis of
the concept may help teachers understand the genesis of the concept in students’
minds,” and “If I present the students with how algebra developed in history, they
feel differently about their difficulties in learning it.”

Although not necessarily in a conscious or explicit way, the answers exhibit
an understanding of the relation between ontogenesis and phylogenesis that is
close to Haeckel’s psychological version of the law of recapitulation. The follow-
ing three examples illustrate, in a more detailed way, some teachers’ positions about
recapitulation.

We will see that in these cases the initial stimulus to consider the history of mathe-
matics in their teaching is the vague idea that some parallelism between child devel-
opment and mathematical development exists. Nonetheless, the kind and amount of
adaptations that result from changes due to differences in historical periods and their
cultural contexts are so significant that it is not possible to talk about some form of
genuine recapitulation.

6.1. First Example

The first teacher is a mathematics instructor in a middle school (students aged 11 to
13), who studied biological sciences in college {(and hence does not have a substan-
tially deep understanding of mathematics) but is fond of mathematics and of teaching.
She confesses her difficulties in teaching because of students’ lack of motivation and
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her personal incapacity to interpret their difficulties. She has never carried out exper-
iments in the classroom encompassing the use of history in mathematics teaching;
nonetheless, she wrote (see also Gallo, 1999):

I feel that my mathematical preparation lacks a historical perspective. I think I could
find in history some answer to my teaching problems.

In my opinion, to follow the evolution of the mathematical thinking could help the
teacher understand how learning mathematics develops in children and preadolescents.

Asan example, I mention the use of fractions by the Egyptians: Itis closer to the intuitive
concept held by a primary pupil. I gave my 10-year-old daughter an Egyptian problem
of dividing loaves among men taken from a seventh-grade mathematics textbook. She
solved the problem in the way that the Papyrus Rhind solves it.

I think it could be interesting to show students other issues taken from history: the
geometrical representations of numbers, the geometrical representations of algebraic
situations offered by Euclid. I think that the latter are more illuminating than the usual
modern presentations.

The division problem the teacher used is the following problem in the Rhind Papyrus
(ca. 1650 BCE): “Example of reckoning out 100 loaves for 10 men, a sailor, a foreman and a
watchman with double” (see Peet, 1923, p. 109). Here we have an example of a teacher
who does not have historical preparation; she only has some scattered ideas taken
from notes in books and articles. She never carried out experiments using history in
the classroom. Her experience is based on anecdotal facts. We interpret what she writes
about history as being representative of the ideas that teachers in similar situations
have about the use of history in teaching: There is a parallel between history and the
way students learn.

6.2. Second Example

Other examples of the relationship of teachers with history that are more precise fo-
cus on experiments performed in the classroom. In these cases, the ideas expressed
by the teacher are not mere intuition but are based on fact. The first case concerns a
class of twenty-one 15-year-old high school students. We only briefly report on this
experiment. (For a wider account, see Paola, 1998.) The teacher has a extensive ex-
perience in instruction and research in mathematics education. In the experiment, he
acted as a teacher and as an observer. His purpose was to work with students on
the concept of probability, which they had already encountered in previous school
years. He chose to work with history to return to the concept of probability us-
ing a different (historical) approach. The work in the classroom was centered on a
problem that is treated in many books of arithmetic from the Middle Ages “How
can the stake be divided in a game where the two players are of the same value
(in modern terms, have the same probability of winning) if the game is interrupted
before one of the two players has realized the winning score?” This problem is known
as “the problem of partition.” Luca Pacioli gave his solution (based on proportio-
nality} to this problem in his famous treatise Summa de arithmetica geometria proportioni
et proportionality (Printed in 1494). The classroom activity was developed through
discussion of the problem between students divided into groups. The teacher not
only orchestrated the discussion but also acted as an observer and reported all that
happened in the classroom. Initially all students agreed that the best way to solve the
problem would be to divide the stake in parts that were proportional to the scores
earned by each player. The teacher easily refuted this solution by proposing that one
of the two players had a score of zero when the game was interrupted. After a discus-
sion on this particular case, another group of students proposed other ways of solving
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it that did not satisfy their classmates. At this point, the teacher read Pacioli’s solu-
tion, which is similar to that of the students, allowing them to see that an important
historical perconage followed the same process they did. The students seemed ready
to approach the concept of fair division of the stake. Additional classes were dedi-
cated to discussing this concept, but the students did not arrive at effective results on
their own (i.e., they were not able to grasp the concept of probability). The teacher
expounded Pascal’s the solution to the problem, as reported in (Pascal, 1954), and
thus introduced students to the concept of probability.

As we said previously, the teacher acted as an observer, and he accurately reported
the activity in the classroom (Paola, 1998). Even if some elements of probability had
been taught to these students in the previous school years, it is clear from the chronicle
of the classroom activity that their strategies were based on proportionality, as Pacioli’s
were. The teacher believes this experiment shows that students follow the path of
history:

The voica of history is again evoked by the teacher to give dignity to the students’
solutions which actually follow the path hinted by mathematicians before Pascal and
Fermat. (Paola 1998, p. 34)

There are many passages suggesting that the teacher is concerned with the mistakes
in the ancient attempts of solving Pacioli’s problem. For example: “The incursion into
history had the goal of giving dignity to the mistake made by students: it was not a
trivial mistake if a mathematician made it” (p. 33).

The teacher showed interest in the parallels between the strategies his pupils and
Pacioli used, but he did not draw general theoretical conclusions concerning the reca-
pitulation law. From his conclusions, we see only that he has a certain confidence in the
validity of following the stages of the historical development for didactic purposes:

With another session I could have read and commented on the Pascal-Fermat letters in
the classroom and thus I would have stressed the role of history [in helping students to
bypass some obstacles in constructing concepts of probability theory] (Paola, p. 35).

6.3. Third Example

The last case we present concerns a high school mathematics and physics teacher who
works with students ranging in age from 16 to 19 years. The teacher has researched
the history of mathematics. She is interested in proof and tries to develop students’
abilities on this subject using historical examples. To this end, she uses the method of
analysis and synthesis, found in the Pappus’s Collectiones Mathematicae. We describe
this method with the following passage taken from Hintikka and Remes (1974):

Now analysis is the way from what is sought—as if it were admitted—through its
concomitants [the usual translation reads consequences] in order to something admitted
in synthesis. For in analysis we suppose that which is sought to be already done, and
we inquire from what it results, and again what is the antecedent of the latter, until we
on our backward way light upon something already known and being first in order.
And we call such a method analysis, as being a solution backwards. In synthesis, on
the other hand, we suppose that which was reached last in analysis to be already done,
and arranging in their natural order as consequents the former antecedents and linking
them one with another, we in the end arrive at the construction of the thing sought. And
this we call synthesis. (p. 8)

The method of analysis is described in a manual for teachers (Smith, 1911) as
follows:
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[ can prove this proposition if [ can prove this thing; I can prove this thing if [ can prove
that; I can prove that if [ can prove a third thing,” and so the reasoning runs until the
pupil comes to the point where he is able to add, “but I can prove that.” This does
not prove the proposition, but it enables him to reverse the process, beginning with the
thing he can prove and going back, step by step, to the thing that he is to prove. Analysis
is, therefore, his method of discovery of the way in which he may arrange his synthetic
proof. (Smith, 1911, pp. 161-162)

Historically this method originated in the field of geometry, but it has since been used
in other branches of mathematics. For example, the method of analysis is at the heart
of algebra: The introduction of symbols made by Viéte in the 16th century did not arise
spontaneously but was a consequence of having adopted the method of analysis for
solving algebraic problems (Charbonneau, 1996). The method of analysis also is not
specific to mathematics; for example, in Marchi (1980), it is applied to chemistry. The
method of analysis represents a link between history and education. In their chapter
on proof, Alibert and Thomas (1991) proposed a method of proving that is similar to
the method of analysis, probably without considering the history of mathematics.

The teaching experiment with this method that the teacher in this example carried
out lasted for many years. We report on only briefly this experiment; for a lengthier
account, see Somaglia (1998). At the beginning of the lesson, the teacher presents her
students with the method of analysis in the field of Euclidean geometry. Students
experience the application of this method in different problems until the method is
mastered and recognized as a tool for attacking geometrical problems. Afterward, the
teacher has the students apply the method to other parts of mathematics (algebra and
calculus) so that they become aware of the transversality of the method (i.e,, that the
method is not linked to a particular domain of knowledge but can be generalized).
Students are then ready to attack problems in physics and in chemistry using this
method (see Clavarino & Somaglia, 2001).

In the description of her work, the teacher never mentioned any parallel between the
strategies of her students and those of past mathematicians, nor the persistence of er-
rors. In our experience, this fact is unusual among teachers dealing with mathematics
history. There are two developments in the work of this high school teacher, the histor-
ical and the educational, that interact, and her way of looking at these processes is very
positive. The teacher looks for what can give students the means to realize the conden-
sation of concepts (see Sfard, 1991). This teacher has an excellent knowledge of math-
ematics history, and moreover it is quite natural for her to work with original sources.
Thus, history is an integral part in her mathematics teaching. Her contact with the past
is not that of someone who looks at the past with the eyes of the present but one who
sees the concepts of the past as real and important content—as foundations in an archi-
tectonic sense—upon which our modern concepts and methods are based. She puts in
action Gadamer’s way of looking at the past, that is, as “a dialogical process in which
two horizons (the past and the present) are fused together” (Radford, 1997a, p. 27).

7. THE RECOURSE TO HISTORY IN CONTEMPORARY
MATHEMATICS EDUCATION

In the previous sections, we discussed some interpretations of recapitulation law
made by past mathematicians and teachers. Let us now examine a few examples of
contemporary mathematics educators, confining our discussion to two specific cases.
The first emphasizes (mainly although not exclusively) a theoretical interest. The sec-
ond appears closer to specific contexts arising from the needs to enhance teaching
and learning processes in mathematics instruction. In the first case, the history of
mathematics appears as a theoretical tool to understand developmental aspects of
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mathematical thinking. The purpose of the second case is to facilitate, through ex-
plicit pedagogical interventions, students’ learning of mathematics by attempting to
relate the development of students’ mathematical thinking to historical conceptual
developments.

7.1. The Interface Between History and Developmental
Aspects of Matnematical Thinking

The work of Sfard (1995) provides a clear example of contemporary views on the
relation between history and the developmental aspects of mathematical thinking.
She analyzed the development of algebra by blending historical and psychological
perspectives. At the beginning of her article, she claimed that

there are good reasons to expect that, when scrutinized, the phylogeny and ontogeny of
mathematics will reveal more than marginal similarities. At least, this is what follows
from the constructivist view according to which learning consists in the reconstruction
of knowledge. (p. 15)

The similarities between the phylogenetic and ontogenetic domains result in this
account from “inherent properties of knowledge.” For Sfard, who follows a Piage-
tian epistemological perspective, knowledge can be theoretically described in terms
of genetic structural levels, and it is precisely the nature of the relationship between
the different levels that accounts for the similarity of phenomena appearing in the
historical and in the individual’s construction of knowledge. As she noted, “difficul-
ties experienced by an individual learner at different stages of knowledge formation
may be quite close to those that once challenged generations of mathematicians”
(Sfard, 1995, pp. 15-16). A large part of the text is devoted to the discussion of the
development of algebraic language. Indeed, using Nesselmann’s (1842) distinction be-
tween rhetorical, syncopated, and symbolic algebra, Sfard endeavored to locate those
“constants” (more precisely, those “developmental invariants”) that ensure the pas-
sage from rhetorical and syncopated algebra to symbolic algebra. Rhetorical algebra
refers to the reliance on nonsymbolic, verbal expressions to state and solve a problem,
as it appears, for instance, in Arabic, Hindu, and Italian Medieval texts. Syncopated
algebraisseen as a more elaborate algebra in that, although still relying heavily on ver-
bal expressions, it infroduces some symbols, the work of Diophantus being the canon-
ical example. Viéte's systematic introduction of letters epitomizes symbolic algebra.
After confronting experimental classroom results with the traditional view of the his-
torical development of algebra, Sfard concluded that one of the development invari-
ants underpinning the passage from rhetorical and syncopated algebra to symbolic
(Vietan) algebra is the precedence of operational over structural thinking. Operational
thinking, in this context, means a way of thinking about algebraic objects in terms of
computational operations. Structural thinking is related to more abstract objects con-
ceived structurally on a higher level.

As we can see, the use of history in Sfard’s approach is an attempt to corrobo-
rate parallelisms between ontogenetic and phylogenetic developments. As she said,
“history will be used here only to the extent which is necessary to substantiate the
claims about historical and psychological parallels” (Sfard, 1995, p. 17). Although she
stressed the importance for teachers to be aware of the historical development of math-
ematics, the intention is not that of creating an historically inspired classroom activity.
This is the goal of another perspective in contemporary mathematics education, dis-
cussed in section 7.2. For the time being, we want to mention a sociocultural approach
that shares Sfard’s use of history for epistemological reasons but, in contrast, empha-
sizes the crucial link between cognition and the practical human activity in which
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cognition is embedded. This approach (see Radford, 1997a; Radford et al., 2000), in-
spired by key ideas of the Vygotskian and cultural perspectives alluded to in section
3 of this chapter, is driven by a conception of knowledge that differs from Piagetian
genetic structuralism, particularly in that knowledge and the individuals’ intellectual
means to produce it are seen as intimately and contextually related to their cultural
setting. Knowledge, in fact, is conceived as the product of a nediated cognitive reflexive
praxis (see Radford, 2000b). The mediated character of knowledge refers to the role
played by artifacts, tools, sign systems, and other means to achieve and objectify the
cognitive praxis. The reflexive nature of knowledge is to be understood in Ilyenkov’s
sense, that is, as the distinctive component that makes cognition an intellectual re-
flection of the external world in the forms of the individual’s activity (Ilyenkov, 1977,
p. 252). Knowledge as the result of a cognitive praxis (praxis cogitans) emphasizes the
fact that what we know and the way we come to know it is framed by ontological
stances and by cultural meaning-making processes that shape a certain kind of ratio-
nality out of which specific kinds of mathematical questions and problems are posed.

Theoretically, however, this does not mean that the study of knowledge is deter-
mined by social, economical, and political factors because these are also historically
produced. Certainly, the link between culture and cognition is more subtle than the
distinction between the “internal” and “external” realms employed in many histori-
ographic approaches that see the external as mere stimulus for conceptual changes
and development. Methodologically, this means that the study of the historical de-
velopment of mathematics cannot be reduced to the sociology of knowledge. This
also means that such a study cannot be done through the analysis of texts only. The
“archive” (to borrow Foucault’'s expression), as a historical repository of previous
experiences and conceptualizations, bears the sediments of social, economic, and
symbolic human activities. Therefore, understanding the rationality within which
amathematical text was produced requires relocating the text with in its own context.
The goal of this kind of epistemological reflection is not to find a parallel between
phylogenetic and ontogenetic developments. In the sociocultural approach that we
advocate, mathematical texts from other cultures are investigated while taking into
account the cultures in which they were embedded. This allows the researcher to
scrutinize the way mathematical concepts, notations, and meanings were produced.

Through an oblique contrast with the notations and concepts taught in contem-
porary curricula, we seek to gain insights about the intellectual requirements that
learning mathematics demands of our students. We also seek to broaden the scope of
our interpretations of classroom activities. In designing classroom activities, we aim
at eventually adapting conceptualizations embedded in history to facilitate students’
understanding of mathematics. Our work on Babylonian algebra and the teaching of
second-degree equations (Radford & Guérette, 2000) is an example of the latter. Our
classroom research on the strategies students use to deal with the algebraic general-
ization of patterns and the way they conceive relations between the concrete and the
abstract (see Radford, 1999b, 2000c)—research based on our investigation of pre- and
Euclidean forms to convey generality (Radford, 1995a)—is an example of oblique
contrast between past developments and contemporary students’ conceptualizing
processes.

Our classroom research on the introduction of algebraic symbolism also benefited
from our epistemological inquiries based on editions of original texts from Medieval
and Renaissance Italian mathematics (Radford, 1995b, 1997b). Space constraints do
not allow us to go further, but this anthropological approach to the epistemology of
mathematics offers a new view of the rise of symbolic algebra in the 16th century. The
difference from traditional views stressing the passage from syncopated to abstract
algebra in terms of abstractive processes is that, in our account, changes in develop-
ment are related to changes in societal practices and the way in which mathematical
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conceptualizations are subsumed in them. Briefly, what we find in our analysis is that
there were two main mathematical practices in the early Renaissance, that used by
merchants and abacus mathematicians and that used by humanists and court math-
ematicians. While the latter were busy with the restoration of Greek texts, the former
were applying Arabic algebraic techniques to practical as well as nonpractical prob-
lems (e.g., problems about numbers). Symbolic algebra was a timeconsuming effort
made by Italian humanist and engineer mathematicians, such as the priest Francesco
Maurolico, who eradicated all commercial content in his Demonstratio Algebrae, which
was completed October 7, 1569 and edited by Napoli in the 19th Century (Napoli,
1876). Another example is the engineer Rafael Bombelli, who, after having learned
that the first books of Diophantus’ Arithmetic were on the shelves of a Roman library,
studied them and ended up eliminating the commercial problems in his Algebra.
Bombelli provided a final version of it that conformed much more to the humanist
understanding of Greek mathematics. In France, a similar effort was made by the
humanists Jacques Peletier and Guillaume Gosselin (although in this case, the pro-
motion of French as a scientific language was an important drive; Cifoletti, 1992).
The underlying reason for the effort to introduce a specific symbolism in algebra was
not due to the limitations of vernacular language. Mathematicians working within
the possibilities offered by rhetorical algebra produced many difficult problems in-
volving several unknowns, as can be seen in Fibonacci’s Il Flos (Picutti, 1983). These
problems could not be simplified by the introduction of letters because what was
symbolized in the emergence of symbolic algebra did not include all of the unknowns
mentioned in a problem but only one of them. (See, for instance Bombelli’s symbol-
ism or the neogeometrical example in Piero della Francesca’s Trattato d’abaco, edited
by Arrighi, 1970.) It was only later that some in Germany began using letters for
several unknowns (see Radford, 1997b). In our approach, the emergence of algebraic
symbolism appears to be related to the effort made by humanists and court-related
mathematicians to render the merchant’s algebra noble and Court worthy (details in
Radford, 2000b). This was accomplished by the lawyer and mathematician Frangois
Viete, at the French court, who followed the prestigious Greek traditions typified by
Diophantus” Arithmetic rather than the multitude 15th- and 16th-century of abacus
treatises.

We now discuss a second reference to the use of history in contemporary mathe-
matics education, that which aims at enhancing, through explicit pedagogical inter-
ventions the students’ learning of mathematics.

7.2. Enhancing Students” Mathematical Thinking
Through Historically Based Pedagogical Actions

Boero and collaborators (see Boero, Pedemonte, & Robotti, 1997; Boero, Pedemonte,
Robotti, & Chiappini, 1998) made use of the mathematics history to investigate the na-
ture of theoretical knowledge and the conditions by which it emerges. Their historico-
epistemological analysis aims at looking for elements considered typical of mathemat-
ical thinking, such as organization, coherence, and systematic character. They have
investigated the role played by definitions and proofs, as well as by the type of the-
oretical discourse. The framework draws from Bakhtin’s theory of discourse, mainly
from the theoretical construct of “voice” (Bachtin, 1968, Wertsch, 1991) and from
Vygostky’s distinction between scientific and everyday concepts (Vygotsky, 1962).
The historico-epistemological inquiry is subsequently invested in the design and im-
plementation of teaching settings based on a careful selection of primary sources of
which the main objective is to allow the students to echo the voice of past mathemati-
cians. In the students’” echoing process, the students bring their individual subjective
and cultural backgrounds to build from it a “voices and echoes game,” which proves
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to be fruitful for the acquisition of theoretical knowledge. The voices from the past are
not listened to passively but actively appropriated through an effort of interpretation.
Usually the students’ echoes may take various forms. Boero and his team have pro-
vided a categorization of some of the ways in which the students enter the dialogical
game. For instance, a “mechanical echo” consists in precise paraphrasing of a verbal
voice, whereas an “assimilation echo” refers to the transfer of the content and method
conveyed by a voice to other problem situations. A “resonance” is a student’s appro-
priation of a voice as a way of reconsidering and representing his or her experience.

Among the concrete instance of theoretical knowledge examined by the authors
are the theories of the falling bodies of Galileo and Newton, Mendel’s probabilistic
model of the transmission of hereditary traits, and theories of mathematical proof and
algebraic language, all of which feature aspects of a counterintuitive character.

Another example of the contemporary use of history in the classroom is the re-
search of Sierpinska and collaborators. One of the goals of this research is to provide
an alternative, based on the use of the Cabri-Géometre software, to the traditional
axiomatic approach to the teaching linear algebra in undergraduate courses. A prob-
lem examined in this research, which underlies important aspects of the learning of
basic linear algebra, is that of understanding key differences in the representations of
mathematical objects. In this line of thought, Sierpinska has emphasized the distinc-
tion between a “numerical” and “geometrical” space. The objects of the arithmetic
spaces are sets of n-tuples of real numbers defined by conditions (in the form of equa-
tions, inequalities, etc.) on the terms of the n-tuples belonging to the sets. It stresses
the fact that these objects can be represented by geometric figures (e.g., lines, sur-
faces). Geometric objects, in contrast, are defined as a locus of points verifying some
conditions (e.g., the “geometric circle” means the locus of points equidistant from a
given point). The geometric objects can be represented by sets of n-tuples defined by
conditions on their terms (e.g., by equations). Thus, in the case of arithmetical spaces,
the geometrical aspect is derived from the numerical one; in the case of geometrical
spaces, the numerical aspect results from the geometrical one. A suitable understand-
ing of elementary linear algebra requires the students to establish a convenient relation
between the geometrical and the numerical views of the objects of linear algebra and
to grasp that the roles of objects and representations are reversed.

The difference between geometrical and numerical space is clear in the history of
linear algebra. Sierpinska, Defence, Khatcherian, and Saldanha (1997) identified three
modes of reasoning, which they labeled “synthetic-geometric,” “analytic-arithmetic,”
and “analytic-structural.” As they noted (a more detailed reportis in Bartolini Bussi &
Sierpinska, 2000), the concepts of linear algebra do not all have the same meaning
and, in the classroom, they are not equally accessible to beginning students. The
design of the teaching activities as well as the understanding of students” answers took
into account the modes of reasoning as determined in the historico-epistemological
analysis. (An extended account of the teaching activities can be found in Sierpinska,
Trgalova, Hillel, & Dreyfus, 1999a and Sierpinska, Dreyfus, & Hillel, 1999b.)

8. SYNTHESIS AND CONCLUSION

In this chapter, we dealt with one of the many uses of the history of mathematics
in mathematics education, namely, a use that can be characterized as an attempt
to investigate historical conceptual developments to deepen our understanding of
mathematical thinking and to enhance the students’ conceptual achievement. In the
first part of the article, we saw how psychological recapitulation was imported from
biological recapitulation and gave rise to a discourse that framed much of the discus-
sions about child development since the beginning of the 20th century. Psychological
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recapitulation was adopted by some eminent mathematicians who, in one form or
another, supported the idea that in developing their mathematical thinking, children
would traverse similar steps as those followed by humans. Within this conception,
children will supposedly find during their development some similar problems, diffi-
culties, or obstacles as those encountered by past mathematicians. Recapitulationism,
we argued, served the cause of some mathematicians as a means to counter the teach-
ing orientation based on commitments to rigor and logical structures arising in the
flow of the research on the foundations of mathematics at the turn of the 20th century.

Nonetheless, one of the problems with the recapitulationist approach is that con-
ceptual developments are seen as chronologically self-explanatory, and psychological
evolution is taken for granted. Furthermore, knowledge is conceived as having little
(if any) bond to its context, and the idea of history is reduced to a linear sequence
of events judged from the vantage point of the modern observer. In all likelihood,
the extremely low number of studies that attempt to check the validity of recapit-
ulation law is evidence of the impossibility of reproducing the conditions in which
ideas developed in the past. As Dorier and Rogers noted, “/naive recapitulationism’
has persisted in many forms and now we accept that the relation between ontogen-
esis and phylogenesis is universally recognized to be much more complex than was
originally believed” (Dorier & Rogers, 2000, p. 168).

This statement corresponds well with recent nonpositivist epistemological and an-
thropological trends. Indeed, in emphasizing the relation between knowledge and so-
cial practices, these trends have raised some criticisms to the acultural stance conveyed
by the general and universal character of the recapitulation law, thereby opening new
ways to reconceptualize the relations between historical conceptual developments
and the teaching of mathematics.

In the course of our discussion, we mentioned two different and critical stances
toward the relation between ontogenesis and phylogenesis as elaborated by Piaget
and Garcia on one hand and by Vygotsky and his collaborators on the other. The way
Piagetian and Vygotskian epistemologies have inspired current work on contempo-
rary mathematics education was made clear in the brief presentations of specific traits
in the works of Sfard, Radford, Boero, and Sierpinska, works that attempt to contrast
(with different purposes and in different senses) ontogenetic and phylogenetic de-
velopments to shed light on the nature of mathematical knowing as well as on the
teaching and learning of mathematics.

Regarding recommendations for future research, it can be suggested, in light of the
previous discussion, that a pedagogical use of the history of mathematics committed
to enhance students’ conceptual achievements requires a critical reflexion about the
conceptions of ontogenesis and phylogenesis and, of course, of knowledge itself. But to
be fruitful in practical terms, such a critical reflexion must be clear about its classroom
implications. In particular, efforts to include teachers in the reflexive enterprise must
be made. The work of Furinghetti suggests that to reach effectiveness in using history,
teachers” willingness is not enough. To use history productively, teachers need to gain
an appropriate understanding of differences between ontogenetic and phylogenetic
developments and to bear a critical stance toward recapitulation views. As the so-
phisticated methodology of Boero’s approach suggests, this requires teachers to be
amply comfortable in handling cognitive and historical aspects. Let us make three
suggestions concerning actions for research.

1. Onatheoreticallevel, discussions about recapitulation and its different meanings
should be promoted among historians, epistemologists, psychologists, anthro-
pologists, and mathematics educators.

2. On a practical level, models of contrasts and conceptualizations between ontoge-
netic and phylogenetic developments also should be considered further. Models
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of contrast may help us to better grasp specific traits of mathematical thinking;, its
relation to the cultural settings, and the mathematical concepts thus produced.
This can lead to a better understanding of the kind of practical pedagogical
interventions that can be envisioned.

3. Theoretical reconceptualizations of recapitulation and contrasts and compar-
isons between ontogenetic and phylogenetic domains should be explicit as to
how they can frame the engineering of material and teaching sequences.

We consider these related research topics as being interactively fed by theoretical
enquiries, historical studies, and also classroom observations.

The course of the three aforementioned actions for future research will ultimately
depend on the very conception of mathematical knowledge to be adopted. At this
point, two main contrasting trends seem to be emerging. In the first trend, what makes
the specificity of mathematical knowledge is its systemic, objective, and logical na-
ture (see Fujimura, 1998). In the second trend, which is much more anthropologically
driven, knowledge is conceived as a kind of culturally framed activity enabling in-
dividuals to enquire about their world and themselves. Here “systematicity” and
“logicality” are seen as circumscribed characteristics of knowledge that can be dif-
ferent from culture to culture (see Radford, 1999c¢). Between them, of course, many
possibilities can be envisaged. To theoretically elaborate on some of those possibili-
ties, to build practical and conceptual reflexions about historical and contemporary
“developments,” and to deepen our understanding of mathematics and facilitate the
way students learn is a challenge for the years to come.
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