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RESUMEN

Reportamos aquí el análisis de una experiencia que reproduce el trabajo de investigación
“Object-Process Linking and Embedding” (OPLE) en el caso de la enseñanza de la
aritmética de los enteros, desarrollada por Linchevski y Williams (1999) en la tradición
de la Educación Matemática Realista (realistic mathematics education (RME)). Nuestro
análisis aplica la teoría de la objetivación de Radford, con el propósito de aportar nuevas
pistas sobre la forma en que la reificación tiene lugar. En particular, el método de análisis
muestra cómo la generalización factual de la estrategia llamada de compensación
encapsula la noción de “agregar de un lado es lo mismo que quitar del otro lado”; una
base fundamental de esto que será, más tarde, las operaciones con enteros. Discutimos,
de igual modo, otros aspectos de la objetivación susceptibles de llegar a ser importantes
en la cadena semiótica que los alumnos ejecutan en la secuencia OPLE, secuencia que
puede llevar a un fundamento intuitivo de las operaciones con los enteros. Sostenemos
que es necesario elaborar teorías semióticas para comprender el papel vital de los
modelos y de la modelación en la implementación de las reificaciones en el seno de la
Educación Matemática Realista (RME).

PALABRAS CLAVE:  Enteros, semiótica, teorías del aprendizaje.

ABSTRACT

We report an analysis of data from an experimental replication of “Object-Process Linking
and Embedding” (OPLE) in the case of integer arithmetic instruction originally developed
by Linchevski and Williams (1999) in the realistic mathematics education (RME) tradition.
Our analysis applies Radford’s theory of semiotic objectification to reveal new insights
into how reification is achieved. In particular the method of analysis shows how the
factual generalization of the so-called compensation strategy encapsulates the notion
that “adding to one side is the same as subtracting from the other side”: a vital grounding
for symbolic integer operations later. Other aspects of objectification are discussed that
are considered likely to be important to the semiotic chaining that students achieve in
the OPLE sequence that can lead to an intuitive grounding of integer operations. We
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argue that semiotic theory needs to be elaborated to understand the vital role of models
and modelling in leveraging reifications in RME.

KEY WORDS:  Integers, Semiotics, Theories of Learning.

RESUMO

Reportamos aqui o análise de uma experiencia que reproduce o trabalho de investigação
“Object-Process Linking and Embedding” (OPLE) en o caso da ensino da aritmética dos
inteiros, desenvolvida por Linchevski e Williams (1999) na tradição da Educação
Matemática Realista (realistic mathematics education (RME)). Nossa análise aplica a
teoria da objetivação de Radford, com o propósito de surgir novas pistas sobre a forma
em que a reificação tem lugar. Em particular, o método de análise mostra como a
generalização factual da estratégia chamada de compensação encapsula a noção de
“agregar de um lado é o mesmo que quitar do outro lado”; uma base fundamental disso
que será, mais tarde, as operações com inteiros. Discutimos, de igual modo, outros
aspectos da objetivação suscetíveis de chegar a ser importante na cadeia semiótica
que os alunos executam na seqüência OPLE, seqüência que pode levar a um fundamento
intuitivo das operações com os inteiros. Sustentamos que é necessário elaborar teorias
semióticas para compreender o papel vital dos modelos e da modelação na
implementação das reificações no seio da Educação Matemática Realista (RME).

PALAVRAS CHAVE:  Inteiros, Semióticos, Teoria de Aprendizagem.

RÉSUMÉ

Nous rapportons ici l’analyse d’une expérience qui vise à reproduire le travail de recherche
“Object-Process Linking and Embedding”  (OPLE) dans le cas de l’enseignement de
l’arithmétique des entiers développé par Linchevski et Williams (1999) dans la tradition
de l’Éducation Mathématique Réaliste (realistic mathematics education (RME)). Notre
analyse applique la théorie de l’objectivation sémiotique de Radford afin d’apporter de
nouveaux éclairages sur la façon dont la réification est accomplie. La méthode d’analyse
montre, en particulier, comment la généralisation factuelle de la stratégie appelée de
compensation encapsule la notion que « ajouter d’un côté, c’est la même chose qu’enlever
de l’autre côté » : une base fondamentale de ce que sera plus tard les opérations avec
des entiers. Nous discutons également d’autres aspects de l’objectivation susceptibles de
devenir importants dans la chaine sémiotique que les élèves accomplissent dans la séquence
OPLE, séquence qui peut mener à un fondement intuitif des opérations sur des entiers.
Nous soutenons qu’il est nécessaire d’élaborer des théorisations sémiotiques pour
comprendre le rôle vital des modèles et de la modélisation dans l’implémentation des
réifications au sein de l’Éducation Mathématique Réaliste (RME).

MOTS CLÉS: Entiers, sémiotique, théories de l´apprentissage.
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The Need for a Semiotic Analysis

Based on the instructional methodology of
Object-Process Linking and Embedding
(OPLE) (Linchevski & Williams, 1999;
Williams & Linchevski, 1997), the dice
games instruction method  for integer
addition and subtraction showed how
students could intuitively construct integer
operations. This methodology, underpinned
by the theory of reification (Sfard, 1991;
Sfard & Linchevski, 1994), was developed
within the Realistic Mathematics Education
(RME) instructional framework. Until very
recently, the dice games method had not
been analysed semiotically. We believe a
semiotic analysis of students’ activities in
the dice games will illuminate students’
meaning-making processes. It will also
provide some further understanding of the
reification of integers in the dice games in
particular and more generally of the theory
of reification, which does not explain “what
spur[s] the students to make the transitions
between stages” (Goodson-Espy, 1998, p.
234). Finally, it will contribute to the
discussion of the semiotic processes
involved in RME, which are currently
insufficiently investigated (Cobb,
Gravemeijer, Yackel, McClain, &
Whitenack, 1997; Gravemeijer, Cobb,
Bowers, & Whitenack, 2000). In this paper
we focus on the compensation strategy
(Linchevski & Williams, 1999), a dice game
strategy on which integer addition and
subtraction are grounded, and begin to
address the following questions:

1. What  are  the  students’  semiotic
processes of the compensation strategy
in the reification of integers through the
OPLE teaching of integers in the dice
games method?

2. What is the semiotic role of the abacus
in the OPLE teaching of integers

through the dice games and what can
we generally hypothesise about the
significance of models and modelling in
the RME tradition?

We found Radford’s semiotic theory of
objectification (Radford, 2002, 2003) to be
a particularly useful theoretical framework
for analysing students’ semiotic processes
in the dice games, despite the very different
context in which it was developed.

The Object-Process Linking and
Embedding Methodology

Sfard (1991) reported as follows:

But here is a vicious circle: on the
one hand, without an attempt at the
higher-level interiorization, the
reification will not occur; on the
other hand, existence of objects on
which the higher-level processes
are performed seems
indispensable for the interiorization
– without such objects the
processes must appear quite
meaningless. In other words: the
lower-level reification and the
higher-level interiorization are
prerequisites of each other! (p. 31)

In order to overcome this ‘vicious circle’,
the Object-Process Linking and
Embedding (OPLE) pedagogy
(Linchevski & Wil l iams, 1999) was
developed: “children a) build strategies
in the situation, b) attach these to the new
numbers to be discovered, and finally c)
embed them in mathematics by
introducing the mathematical voice and
signs” (Linchevski & Williams, 1999, p.
144).  The pedagogy can be best
understood through the dice games
context in which i t  was developed
(Linchevski & Williams, 1999), which
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aimed at overcoming the paradox of
reification described above for the case
of arithmetic of the integers.

The dice games instruction method
(Linchevski & Williams, 1999) is an intuitive
instruction of integer addition and
subtraction in the RME instructional
framework aiming at the reification of
integers. The transition from the narrower
domain of natural numbers to the broader
domain of integers in the method is
achieved through emergent modelling
(Gravemeijer, 1997a, 1997b, 1997c;
Gravemeijer et al., 2000) and takes
advantage of students’ intuition of fairness
(Liebeck, 1990) for the cancellation of
negative amounts by equal positive
amounts (Dirks, 1984; Linchevski &
Williams, 1999; Lytle, 1994). Practically,
the model – the double abacus (see figure
1) – affords the representation and
manipulation of integers as objects before
they are abstracted and symbolised as
such by the students (Linchevski &
Williams, 1999):

The integer is identifiable in the
children’s activity first as a process
on the numbers already understood
by the children, then as a ‘report’ or
score recorded (concretised by the
abacus). The operations on the
integers arise as actions on their
abacus representations, then
recorded in mathematical signs.
Finally, the operations on the
mathematical signs are encountered
in themselves, and justified by the
abacus manipulations and games
they represent. Thus the integers are
encountered as objects in social
activity, before they are symbolised
mathematically, thus intuitively filling
the gap formerly considered a major
obstacle to reification. (Linchevski &
Williams, 1999, p. 144)

Figure 1: The abacus

Therefore, in the games the situated
strategies are constructed in a realistic
context which allows intuitions to arise.
In this process the abacus model is
utilized which “affords representation of
the two kinds of numbers, and allows
addition and subtraction (though clearly
not multiplication and division) of the
integers to be based on an extension of
the children’s existing cardinal schemes”
(Linchevski & Williams, 1999, p. 135).
These strategies are linked to objects
(yellow and red team points, see next
section), thus allowing object-process
linking. Later, the formal mathematical
language and symbols enter the games.
In the following section we present the
games more analytically.

The Dice Games Instruction

The method involves 4 games in each
of which two teams of two children are
throwing dice (e.g. a yellow and a red
die in game 1) and recording team points
on abacuses: the points for the yellow
team are recorded by yellow cubes on
the abacuses and those for the red team
are red cubes on the abacuses. The
students sit in two pairs, each having a
member of each team and an abacus
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(see figure 2). On each pair’s abacus,
points for both teams are being recorded
and the team points on the two abacuses
add up. The students in turn throw the
pair of dice, recording each time the
points for the two teams on their abacus.
When the two abacuses combine to give
one team a score of 5 points ahead of
their opponents, that team wins the
game. For instance in game 1, if the
yellow team at a certain point is 2 ahead
and they get a score on the pair of dice,
say 4 yellows and one red, then they can
add 3 yellows to their existing score of 2
and so get 5 ahead, and they win. But
note the complication that because we
have two abacuses for the two pairs, a
‘combined score of 2 yellows’ might
involve, say 1 red ahead on the one
abacus and 3 yellows ahead on the other
abacus: so there are mult iple
‘compensations’ of reds and yellows
going on in var ious combinat ions.
Therefore, the important thing in the
games is not how many points a team
has, but how many points ahead of the
opponent: hence the nascent directivity
of the numbers.

Figure 2:  Students playing one of the dice games

In the first game (game 1) two dice are
used, a yellow and a red one, giving points
to the yellow and red team in each throw.
Shortly after the beginning of game 1, often
with the urging of the researcher, the
students intuitively understand that they
can cancel the team points on the dice,
thus introducing an important game
strategy, the cancellation strategy (not
examined in this paper). For example,
according to this strategy, if a throw of the
pair of dice shows 3 points for the yellow
team and 1 for the red team, this is
equivalent to just giving 2 points for the
yellow team. The rationale is that the
directed difference of the points of the
yellow and red team (i.e. the amount of
points that the yellows are ahead or behind
the reds) will be the same anyway. As the
abacus columns have only space for 10
points for each team, a team column will
often be full before a team gets 5 points
ahead of the opponent. In order for the
game to go on, the compensation strategy
is formulated, that is, if you can’t add points
to one team, subtract the same amount of
points from the other, so as to maintain the
correct directed difference of team points.
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This strategy is the second important game
strategy and it is the one focused upon in
this paper. By the end of the games, this
strategy will lead to the intuitive construction
of  equivalences  like:      and
                     .

Game 2 is similar to game 1, and is
introduced as soon as (and not before) the
children are able to cancel the pair of dice
into ONE score quite fluently. In this game
an extra die is now thrown whose faces are
marked ‘add’ and ‘sub’ (subtract). From now
on this will be called the add/sub die. The
introduction of this die allows for subtraction
to come into play, instead of just addition,
as in game 1. In analogy to game 1,
according to the compensation strategy, if
you have to subtract points from a team
but there are none on the abacus to
subtract, you can add points to the other
team instead.

In game 3, formal mathematical symbols
for integers are introduced. The add/sub die
is not used and the yellow and red die are
replaced  with  an  integer  die giving one
of  the  following  results  on  each   throw:
–1, –2, –3, +1, +2, +3. Positive integers are
points for the yellow team and negative
integers are points taken from the yellows,
thus they are points for the reds (for more
details see Linchevski & Williams, 1999).
Here the mathematical voice is
encouraged, so that the children say “minus
3” and “plus 2” etc.

In the final game (game 4), the add/sub die
is back into the game, allowing again for
subtraction to be concerned. In these two
games the cancellation strategy is no
longer needed and the compensation
strategy is transformed into a formal
symbolic, though still verbal, form: “add
minus 3” etc. Once the students become
fluent in game 4, they begin recording the
games for a transition from verbal to written

+(+2) ≡ −(−2)
+(−2)≡ −(+2)

use of formal mathematical symbols, but
we are not going to discuss this transition
further in this paper.

Some Earlier Analyses: Reification in
the Dice Games

Linchevski and Williams (1999) have
analysed the dice games in terms of
reification. Through the instructional
methodology of Object-Process Linking
and Embedding, they achieved the intuitive
reification of integers and the construction
of processes related to integer addition and
subtraction through the manipulation of
objects on a model (i.e. the yellow and red
team points). However, they did not provide
a semiotic-analytical account of the
reification processes – their main concern
was to show that reification of integers was
possible through their method. We will
discuss here the reifications taking place
in the dice games, as we understand them,
so that we can better appreciate the need
for a semiotic analysis of students’
processes.

In relation to the reification of integers,
according to Linchevski & Williams (1999),
the object-process linking allows the intuitive
manipulation of integers as objects from the
very beginning of the dice games. As a result
of this methodological innovation, some
elementary processes are obvious from the
beginning. These are, that if a team gets
points (or points are subtracted from it), the
new points add-up to (or are subtracted
from) the points the team already has.
These processes are intuitively obvious
from the introduction of game 1 (and game
2 respectively). However, one may argue
that the students still operate at the level
of natural numbers, not integers.

Integer processes begin to be constructed,
though integers are not yet introduced
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explicitly, once the students focus on the
score of the game, that is, which team is
ahead and by how many points. The
calculation of the score as the directed
difference of the piles of cubes of the points
of the two teams is the first object-process
link to be constructed. The second object-
process link to be achieved in the games
is the cancellation of the team points on
the dice: i.e. if in a throw the yellows get 2
points and the reds 1 point, you might as
well just give 1 point to the yellows. Thus
this link is possible through the
establishment of the so called cancellation
strategy. Further, the compensation strategy
– according to which adding to one side of
the abacus is the same as subtracting from
the other side – needs to be introduced as
an object-process link. Up to this point, all
the necessary object-process links are in
place. Next, at the beginning of game 3,
integers are introduced into the games: the
formal mathematical voice enters the games.
Through the manipulation of the formal
mathematical symbols of integers in the
above object-process links, integers are
being reified and the addition and subtraction
of integers are being established.

However, in the above analysis the
following significant question arises: What
are the meaning-making processes
(semiotic) involved in students’ integer
reification in the dice games? We certainly
do not claim that we will exhaust this issue
here, but we will begin to address it through
the vital component of the compensation
strategy.

Semiotics are Needed to Complement
Reification Analyses

The theory of reification, drawing support
from a cognitivist/constructivist view of
learning, is mainly interested in the internal
processes of students’ abstraction of

mathematical objects. It does not generally
refer to the social semiotic means students
used to achieve the abstraction of these
objects, (e.g. in the dice games, the integers).
The analysis of Linchevski & Williams (1999)
did in fact go some way in providing a social
analysis of the context as a resource for
construction of the compensation strategy:
they were excited mainly here by the
accessing of the socio-cultural resource of
‘fairness’ in the games as a basis for an
intuitive construction of compensation.
Semiotic chaining was adduced to explain
the significance of the transition to the
‘mathematical voice’, so that “two points from
you is the same as two points to us” slides
under a new formulation like “subtract minus
two is the same as adding two… plus two”.
However, we will complement Linchevski &
Williams’ (1999) study with a more detailed
semiotic analysis of the way that the abacus,
gesture and deictics mediate children’s
generalisations (after Radford’s, 2003, 2005
methodology).

We wish to clarify at this point that we do not
reject the reification analyses. Instead, we
agree with Cobb (1994) who takes an
approach of theoretical pragmatism,
suggesting that we should focus on “what
various perspectives might have to offer
relative to the problems or issues at hand”
(p. 18). We propose that in this sense
semiotic social theories can be
complementary to constructivist ones. More
precisely, we propose that Radford’s theory
of objectification (Radford, 2002, 2003) can
be seen as complementary to the theory of
reification (Sfard, 1991; Sfard & Linchevski,
1994): while Sfard (1991) provides a model
for the cognitive changes taking place,
Radford (2002, 2003) provides the means
to analyse these changes on the social,
‘intermental’ plane.

Radford addresses the issue of semiotic
mediation through his theory of
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Radford’s Semiotic Theory of
Objectification

Objectification is “a process aimed at bringing
something in front of someone’s attention or
view” (Radford, 2002, p.15). It appears in
three modes of generalization: generalization
through actions, through language and
through mathematical symbols. These are
factual, contextual and symbolic
generalization (Radford, 2003).
Objectification during these generalizations
is carried out gradually through the use of
semiotic means of objectification (Radford,
2002):

…objects, tools, linguistic devices,
and signs that individuals intentionally
use in social meaning-making
processes to achieve a stable form of
awareness, to make apparent their
intentions, and to carry out their
actions to attain the goal of their
activities, I call semiotic means of
objectification. (Radford, 2003, p. 41)

Factual generalization, a generalization of
actions (but not of objects), is described as
follows:

… A factual generalization is a
generalization of actions in the form
of an operational scheme (in a neo-
Piagetian sense). This operational
scheme remains bound to the
concrete level (e.g., “1 plus 2, 2 plus
3” …). In addition, this scheme
enables the students to tackle virtually
any particular case successfully.
(Radford, 2003, p. 47)

The formulation of the operational scheme
of factual generalization is based on deictic
semiotic activity, e.g. deictic gestures, deictic
linguistic terms and rhythm. The students rely

objectification (Radford, 2002, 2003). This
theory, presented in some detail in the
following section, analyses students’
dependence on the available semiotic
means of objectification (SMO) (Radford,
2002, 2003) to achieve increasingly
socially-distanced levels of generality.
Radford explains this reliance on SMO
through reference to Frege’s triad: the
reference (the object of knowledge), the
sense and the sign (Radford, 2002). The
SMO refer to Frege’s sense, that is, they
mediate the transition from the reference
to the sign. Moreover, Radford extended the
Piagetian schema concept to include a
sensual dimension, as Piaget’s emphasis
on the process of reflective abstraction can
lead to an inadequate analysis of the role
of signs and symbols (Radford, 2005).

The schema …is … both a sensual
and an intellectual action or a complex
of actions. In its intellectual dimension
it is embedded in the theoretical
categories of the culture. In its sensual
dimension, it is executed or carried out
in accordance to the technology of
semiotic activity… (Radford, 2005, p.
7)

Given this extended schema definition, the
process of abstraction of a new
mathematical object needs to be
investigated in relation to the semiotic activity
mediating it. This investigation should
expose students’ meaning making
processes in the objectifications taking
place in the dice games, which allow the
construction of integers as new
mathematical objects, i.e. their reification in
Sfard’s sense.

In the next section we present analytically
Radford’s theory of objectification (Radford,
2002, 2003), which will then be applied in
the section following it to some of our data
from the instruction through the dice games.
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on the signification power provided by deictics
to refer to actions on non-generic physical
objects. These are perceivable, non-abstract
objects which can be manipulated
accordingly. In the example from Radford
(2003) below, the students had to find the
number of toothpicks for any figure in the
following pattern.

The elaboration of the operational scheme
in this case can be seen in the following
section of an episode provided by Radford
(2003).

1.  Josh: It’s always the next. Look! [and
pointing to the figures with the pencil he
says the following] 1 plus 2, 2 plus 3 […].
(Radford, 2003, p. 46-47)

Josh constructed the operational scheme for
the calculation of the toothpicks of any figure
in the form “1 plus 2, 2 plus 3”, while pointing
to the figures. Moreover, he used the linguistic
term always to show the general applicability
of this calculation method for any specific
figure and the term next which “emphasizes
the ordered position of objects in the space
and shapes a perception relating the number
of toothpicks of the next figure to the number
of toothpicks in the previous figure” (p. 48).
Hence, in factual generalization:

…the students’ construction of meaning
has been grounded in a type of social
understanding based on implicit
agreements and mutual comprehension

that would be impossible in a nonface-
to-face interaction. … Naturally, some
means of objectification may be powerful
enough to reveal the individuals’
intentions and to carry them through the
course of achieving a certain goal.
(Radford, 2003, p. 50)

In contextual generalization the previously
constructed operational scheme is
generalised through language. Its generative
capacity lies in allowing the emergence of
new abstract objects to replace the previously
used specific concrete objects. This is the
first difference between contextual and
factual generalization: new abstract objects
are introduced (Radford, 2003). Its second
difference is that students’ explanations
should be comprehensible to a “generic
addressee” (Radford, 2003, p. 50): reliance
on face-to-face communication is excluded.
Consequently, contextual generalization
reaches a higher level of generality. More
specifically, in Radford (2003) the operational
scheme “1 plus 2, 2 plus 3” presented above
becomes “You add the figure and the next
figure” (p. 52). Therefore, the pairs of specific
succeeding figures 1, 2 or 2, 3 become the
figure and the next figure. These two linguistic
terms allow for the emergence of two new
abstract objects, still situated, spatial and
temporal (Radford, 2003). Reliance on face-
to-face communication is eliminated, and
deictic means subside. However, the
personal voice, reflected through the word
you, still remains.

Figure 3:  First three ‘Figures’ of the ‘toothpick pattern’, labelled ‘Figure1’, ‘Figure 2’, ‘Figure 3’ by
Radford (the picture in the box was taken from Radford, 2003, p. 45)
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In symbolic generalization, the spatial and
temporal limitations of the objects of
contextual generalization have to be
withdrawn. Symbolic mathematical objects
(in Radford’s case algebraic ones) should
become “nonsituated and nontemporal”
(Radford, 2003, p.55) and the students lose
any reference point to the objects. To
accomplish these changes, Radford’s
(2003) students excluded the personal
voice (such us you) from their
generalization and replaced the generic
linguistic terms the figure and the next
figure with the symbolic expressions        and
       correspondingly.  Hence,  the
expression you add the figure and the next
figure became . Still, Radford
(2003) points out that for the students the
symbolic expressions  n   and (n+1)
remained   indexed to the situated objects
they substituted. This is evident in students’
persistent use of brackets and their refusal
to see the equivalence of the expressions

    and                  . Summarising,
the mathematical symbols of symbolic
generalization were indexes of the linguistic
objects of contextual generalization, which
in turn were indexes of the actions on
concrete physical objects enclosed in the
factual generalization operational scheme.

The Compensation Strategy – Factual
Generalization

In this section we analyse the objectification
of the compensation strategy in terms of
factual,  contextual and symbol ic
generalization. We present excerpts of
the discourse contained in the games,
which we analyse in terms of their
contr ibut ion to the progressive
abstraction of integers through the means
of objectification. We also discuss the
SMO involved in students’ processes. The
analyses of factual, contextual and
symbolic generalization are presented

n
(n +1)

n + (n +1)

(n + n) +1n + (n + 1)

separately, but first we provide some
information about the students and the
episodes in this paper.

The study, part of an ongoing PhD
research, involves year 5 students in
Greater Manchester, who had not yet been
taught integer addition and subtraction.
The PhD involves two experimental
methods (respectively containing 5 and 6
groups of 4 students) from 2 separate
classes and a control group from a third
class. In each experimental method class
the students were arranged by their
teacher in mixed gender and ability
groups, which were taught for three one-
hour lessons. In this paper we focused
on a microanalysis of one group of one
of the methods – the dice games as
originally applied by Linchevski and
Williams (1999).

Radford’s factual generalization is quite
a clear-cut process based on action on
physical objects formulated into an
operational scheme through deictic activity.
However, in our investigation of the
compensation strategy, we find a multi-step
process of semiotic contraction happening
inside it. The three following episodes co-
constitute in our view the factual
generalization. In these episodes, occurring
during game 1 (in lesson 1), the students
were faced with a situation where they had
to add cubes/points to one of the two teams,
but there was no space on the abacus. As a
result, a breakthrough was needed for the
scoring to continue.

Episode 1 (Minutes 14:30-14:50, lesson 1):
Umar had to add 1 yellow cube on the
abacus but, as there was no space in the
relevant column, he got stuck. Fay
proposed taking away 1 red cube instead.
““…” indicates a pause of 3 sec or more,
and “.” or “,” indicate a pause of less than
3 sec” (Radford, 2003, p. 46).
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Fay:      You take 1 off the reds [pointing to
the red column on her abacus]. […]
Because then you still got the
same, because you’re going back
down [showing with both her hands
going down at the same level]
‘cause instead of the yellows
getting one [raising the right hand
at a higher level than her left hand]
the red have one taken off [raising
her left hand and immediately
moving it down, to show that this
time the reds decrease].

Fay’s proposal for the subtraction of a red
cube instead of the addition of a yellow one
is the first articulation of the compensation
strategy in the games for this group of
students. We especially noticed the
analytical explanation of the proposed
action, which allows the process of
compensation to be introduced for the first
time. Deictic activity was associated both
with the proposed action of taking away a
red cube and with the justification following
it. Fay used pointing to the red cubes on
the abacus, as well as a gesture with both
her hands indicating the increase/decrease
of the pile of cubes in each team’s column.
Moreover, the names “the yellows” and “the
red” have a deictic role. We also notice the
phrase “you still got the same”, stressing
that something (obviously important)
remains unaltered: either we add a yellow

point/cube or subtract a red point/cube.
This signi f icant unaltered game
characteristic, which we call the directed
difference of the points of the yellow and
red team, still cannot be articulated as it
has not yet acquired a name.

Episode 2 (Minutes 20:15-20:43, lesson
1): The yellows’ column was full and the
reds’  only had space for 1 cube.
Compensation was needed and as Zenon
could not understand, Jackie explained
as follows.

Jackie: It’s still the same, like … [a very
characteristic gesture (see figure
4): she brings her hands to the
same level and then she begins to
move them up and down in
opposite directions, indicating the
different resulting heights of the
cubes of the two columns of the
abacus] because it’s still 2, the
yellows are still 2 ahead [she does
the same gesture while she talks]
and the reds are still 2 below, so
it’s still the same… [again the
gesture] … em like… [closing her
eyes, frowning hard] … I don’t
know what it’s called but it’s still the
same… score [the gesture ‘same’
again before and while articulating
the word “score” – indicating ‘same’
score on her abacus].

Figure 4: Jackie’s gesture (this sequence of action performed fast and repeated several times)
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In episode 2, we noticed the repeated use
of the phrase “it’s still the same”, the word
“still” followed by the difference in team
points (i.e. “still 2”, “still 2 ahead”), as well
as the accompanying characteristic
gesture. The gesture, too, emphasized the
importance of the unaltered directed
difference of the cubes of the two teams.
We also noticed Jackie’s difficulty in finding
a proper word for this important unaltered
game characteristic: “em like… [closing her
eyes, frowning hard] … I don’t know what
it’s called but it’s still the same… score”
(extract from episode 2 above). We believe
the articulation of the word score, meaning
what we call the directed difference of team
points, as well as Jackie’s gesture were
very important for the factual generalization
process, because they achieved the
semiotic contraction (Radford, 2002) of the
process originally established in episode 1.
From this point onward, the students do not
need to provide an analytical semiotic
justification of the proposed action, as Fay
needed to in episode 1. Just saying that
the score will be the same is enough. A
similar effect was accomplished by the word
difference in a different group (Koukkoufis
& Williams, 2005).

Episode 3 (Minutes 21:27-21:57, lesson 1):
 There’s only space for 2 yellow cubes, but
Fay has to add 3 yellows and 1 red.

Fay:        Add   2    on  [she   adds    2   yellow
cubes] and then take 1 of theirs off
[she takes off a red cube] and then
for the reds [pointing to the red
dice] you add 1, so you add the red
back on [she adds 1 red cube].

Researcher:  […] Does everybody agree?
(Jackie and Umar say
“Yeah”).

Finally, in the above episode further
semiotic contraction took place. In fact, no

justification of the proposed action was
provided, as it seemed to be unnecessary
– indeed Jackie and Umar agreed with Fay
without further explanation. We argue that
the further semiotic contraction happening
in episode 3 completed the factual
generalization of the compensation
strategy.

To sum up, we see in the three episodes
provided up to this point a continuum as
follows: in episode 1 Fay presented a
proper action and an analytical process to
justify it; in episode 2 again a proper action
was presented but the process justifying it
was contracted; finally in episode 3 the
presentation of the proposed action was
sufficient, therefore further semiotic
contraction took place and the process for
resulting in this proposed action
disappeared.

The Compensation Strategy –
Contextual Generalization

Contextual generalization, in which
abstraction of new objects through
language takes place, has not yet been
completed in this case. If we had had a
contextual generalization of the
compensation strategy, we would have a
generalization like this: if you can’t add a
number of yellow/red points, you can
subtract the same number of red/yellow
points instead. Similarly for subtraction, the
generalization would be similar to this: if
you can’t subtract a number of yellow
points/red points, you can add the same
number of red/yellow points instead.
However, our students did not
spontaneously produce such a
generalization, neither does the
instructional method demand it; therefore
we did not insist that the students produce
it. We believe that the lack of articulation
of the compensation strategy through

  168



Semiotic Objectifications of the Compensation Strategy:En Route to the Reification of Integers

generic linguistic terms, and thus the
incompleteness of the production of a
contextual generalization, has to do with
the compensation strategy being too
intuitively obvious. On the contrary, in the
case of the cancellation strategy
(Linchevski & Williams, 1999) which was
not so obvious, the same students
produced a contextual generalization as
follows (Fay, minutes 38:17-38:40, lesson
1, 5 reds and 2 yellows): “you find the
biggest number, then you take off the
smaller number”. In the case of the
contextual generalization of the
cancellation strategy, we notice that new
abstract objects (“the biggest number”, “the
smaller number”) enter the discourse, as
in Radford (2003). However, we will not
discuss the contextual objectification of the
cancellation strategy here.

The Compensation Strategy –
Symbolic Generalization

Despite the incompleteness of the contextual
generalization, we found that symbolic
generalization was not obstructed! In this
section we discuss the symbolic
generalization of the compensation strategy,
which presents some differences from that
of the case presented by Radford (2003).

To begin with, in Radford (2003) symbolic
generalization remained indexical throughout
the instruction. In our case, the students
began using symbolic generalization non-
indexically. For convenience, we present
indexical and non-indexical symbolic
generalization separately.

Indexical Symbolic Generalization

The elaboration of a symbolic
generalization for the compensation
strategy demands the replacement of pre-
symbolic signs with symbolic ones.

Therefore, the reference to yellow and red
team points has to be substituted by
reference to positive and negative integers.
According to the dice games method, this
is achieved in the beginning of game 3,
when the red and the yellow die are
replaced by the integer die. Analytically, the
numbers +1, +2 and +3 (on the integer die)
are points for the yellow team. Further, –1,
–2 and –3 (on the integer die) are points
taken away from the yellow team, thus they
are points for the red team. Of course,
similarly one can say that +1, +2 and +3
are point taken away from the red team.
Conclusively, when it is “+” it is yellow
points, while when it is “–” it is red points.
In the following episode we witness the
transition from the pre-symbolic signs of
“yellow team points” and “red team points”
to the symbolic signs of “+” and “–” (positive
and negative integers).

Episode 4: Minutes: 20:45-21:55, lesson 3.

Researcher:    +1. Who is getting points?
Jackie:           The yellows
Researcher:    […] Who is losing points?
Jackie, Umar:  The reds
Fay:           […]  reds   are  becoming

   called  minuses and then
   the yellows are becoming

          called plus.

As a result of the above introduction of the
formal mathematical symbols for integers,
positive integers are used to indicate yellow
team points and negative integers are used
to indicate red team points. Here lies the
first difference from Radford’s symbolic
generalization, which is soon to become
evident.

In Radford (2003), the symbolic signs/
expressions used in symbolic
generalization were indexes of the
contextual abstract objects of contextual
generalization. Hence, the expressions n
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and n +1 indicated the generic linguistic
terms the figure and the next figure.
Instead, in the dice games the formal
mathematical symbols of integers were
indexes not of the generic linguistic terms
of contextual generalization (which was
never completed), but of the concrete
objects of factual generalization. For
example, +2 is an index of “2 more for
yellows” as well as of “2 yellow points”, as
in episode 5.

Episode 5 (Minutes: 33:15-33:53, lesson 3)

Researcher: […] you get –2. What would
you do? (Fay takes 2 yellow
cubes off) […] What if you
had +3?

Umar:         You take away 3 of the reds.
Zenon:        … or you could add 3 to the

yellow.
Fay, Jackie:   … add 3 to the yellow.
Researcher:  Oh, 3 off the reds or 3 to the

yellows. (All the students
agree)

Indeed, the students read +2 on the die,
the researcher articulates it as “plus 2”,
but then the students’ discussion is in
terms of reds and yellows. If symbolic
signs were being used non-indexically at
that point, Umar would have said “minus
3” instead of saying “3 of the reds” (as in
the phrase “take away 3 of the reds”).
Also the others would have said “plus 3”
instead of “3 to the yellow” (as in the
phrase “add 3 to the yellow”). It becomes
clear that in our case, we witnessed a
direct transition from factual to indexical
symbolic generalization, without the
completion of contextual generalization
being necessary. This transition was
afforded due to the RME context and the
abacus model.

In indexical symbolic generalization, though
the operational scheme of factual

generalization is reconstructed through the
use of symbolic signs instead of concrete
physical objects, i t  is not a simple
repetition of factual generalization in
symbolic terms that takes place. No
semiotic contraction needs to take place
for the establ ishment of  the
compensation strategy in symbolic terms.
The students know right away that
instead of adding +2 (2 yellow points)
they can subtract 2 red points.

Non-indexical Symbolic Generalization

Up to now the formal symbolic signs for
integers are being used indexically, but the
intended instructional outcome is that
students will eventually be using these
symbols non-indexically. We do not imply
that the symbols should drop their
connection to the context though. Indeed
it is essential that students can go back to
the contextual meanings of these symbols
in the dice games, so as to draw intuitive
support regarding integers. We just
emphasize that the students should
become flexible in using the formal symbols
of integers either indexically or non-
indexically. A non-indexical use of integer
symbols would mean explicit reference
solely to pluses and minuses (i.e. +2, –3
etc). Therefore, the compensation strategy
should be constructed only based on the
formal symbols of integers, excluding the
pre-symbolic signs of yellow and red team
points.

In order to target non-indexical symbolic
generalization, we encouraged students to
articulate the symbols on the dice as “+”
(plus) and “–” (minus), in an attempt to
facilitate the connection of the verbalization
plus/minus to the symbolic signs +/–.
Though in the beginning most students
needed to be reminded to use the “proper”
names of the signs, by the time the students
had played game 4 for a while they were
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able to refer to integers in a formal manner,
as can be seen in the following examples
of student verbalizations. We believe that
the introduction of the add/sub die in game
4 obliged the students to refer correctly to
the integers with their formal names, so as
to be able to perform the actions of addition
and subtraction on these symbols. For
example (brackets added), Fay said: add
[minus 3], subtract [2 of the minuses];
Zenon said: add [2 to the pluses]; Jackie
said: add [minus 2]. Umar was stil l
struggling with the verbalization and
sometimes said [minus 1] add or add
[subtract 2] etc.

Finally, we checked if students had
spontaneously produced a more general
verbalization in a form like “if you can’t add
pluses/minuses, you can subtract minuses/
pluses” or the other way around. In this
group, such a generalization did not take
place. We believe, however, that this will
not necessarily be the case for other groups
of students, and indeed that it may be
desirable to encourage this in the teaching.

The Semiotic Role of the Abacus Model

As may be clear by now, the abacus model
and the RME context of the dice games are
very significant for the reification of integers
and the instruction of integer addition and
subtraction through the dice games
method. Up to now we have referred to the
semiotic processes, but we have not
referred to the abacus model: though
Radford’s theory of objectification has been
crucial in the analyses so far, we contend
it needs to be complemented by an analysis
of the role of the abacus in affording these
semiotics. We claim that analysing the
contribution of the model in students’
semiosis will afford some primary
discussion of phenomena such as (i) the
embodiment of semiotic activity, (ii) the

incompleteness of the contextual
generalization and (iii) the direct transition
from factual to symbolic generalization.

The abacus model in the games seems in
many ways to be the centre of the activity:
the abacus is in the centre of a ‘circle of
attention’, as we are all sitting around the
abacuses (see figure 2 again); it affords
the representation of the yellow and red
team points through their red and yellow
cubes; it is the constant point of reference
about which team is ahead. It was only
natural that the abacus, being in the centre
of the spatial arrangement and credited
with allowing the students to keep the
score, became the focus of semiotic
activity. What is even more important: the
abacus mediated in some cases the
semiotic activity.

This can be seen in several features of the
games. To begin with, the team points
referred to the above episodes as “points
for the yellow/red” (or as “yellow/red
points”) were concretized or ‘objectified’
from the start: they were yellow and red
cubes. That is, the points were embodied
into the cubes. This allows, as Linchevski
and Williams (1999) point out, for integers
to be introduced in the discourse as objects
from the very beginning: the students
speak about the general categories of
yellow and red points from the beginning.
Additionally, the directed difference was
embodied on the abacus, as the difference
of yellow and red points can be seen with
a glance at the abacus, and the sign is
evidently that of the larger pile of cubes:
i.e. in figure 1 the yellows on that abacus
are 2 points ahead. This convenient
reference to the directed difference in the
two piles of cubes afforded the association
of semiotic activity to it, which made the
establishment of the compensation
strategy possible. Such semiotic activity is
Fay’s gesture in episode 1 in which the
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movements of her hands were matched
with a verbal manipulation of the difference
of the two piles of cubes (i.e. “you’re going
back down”) to show that the directed
difference remained the same. Also
Jackie’s quick movement of her hands up
and down in episode 2 again indicates the
difference in the two piles of cubes, in other
words it points to the directed difference
as it is embodied on the abacus. We
suggest that this embodiment is crucial
because it mediates the emergence of
deictic semiotic activity such as that of Fay
and Jackie in episodes 1 and 2 and hence
allows the objectification to take place. We
may even consider the toothpick figures in
Radford (2003) to afford the same role.

As we noted above, the embodiment of the
yellow and red team points through the
cubes allowed the introduction of points for
the yellow and points for the red as general
abstract categories. We mentioned earlier
that the students did not complete the
contextual generalization of the
compensation strategy to produce a
generalization like “if you can’t add a
number of yellow/red points, you can
subtract the same number of red/yellow
points instead”. However, the embodiment
of the yellow and red team points of the
abacus had already introduced generic
situated objects into the discourse, even
though this was not achieved through
language. Consequently, the students
could obviously see that the operational
scheme of the factual generalization can
be applied for any number of points for a
team. This is an additional reason to the one
presented earlier for the incompleteness of
contextual generalization. Hence, this
embodiment of the team points in a sense
shapes the semiotic activity in the
compensation strategy, providing one more
reason why the completeness of contextual
generalization was unnecessary in this
case.

Further, the semiotic role of the abacus was
crucial in the direct transition from factual
to symbolic generalization. As we have
seen in episode 4, the yellow points
became “plus” and the red points are now
“minuses”. We say that this direct transition
was afforded through the construction of a
chain of signification (Gravemeijer et al.,
2000; Walkerdine, 1988), in the form of a
transition from the embodiment of yellow
and red points through the abacus cubes
to the embodiment of positive and negative
integers. As a consequence of this
transition, the formal symbols could be
embedded into the operational scheme for
the compensation strategy established
through the factual generalization. Quite
naturally then, the embedding of the formal
symbols in the operational scheme
performed on the abacus produced the
symbolic generalization directly from
factual generalization.

Conclusion

Beginning with a presentation of the OPLE
methodology and the dice games instruction,
we argued the need for a finer grained,
semiotic analysis of objectifications to explain
how reification is accomplished.

We have applied Radford’s theory of
objectification to fill this gap in understanding
the case of the compensation strategy, a vital
link in the chain of significations necessary
to OPLE’s success: thus we were able to
identify relevant objectifications applying
Radford’s semiotic categories of
generalisation. This work began to reveal
the significance of the abacus itself, which
affords, and indeed shapes the semiosis
in essential ways. We have also shown
how the effectiveness of the pedagogy
based on OPLE can be explained as
semiotic chaining using multiple semiotic
objectifications and begun to discuss the
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significance of models and modelling in the
dice games, and hence in the OPLE
methodology. Finally, we suggest that our
discussion over the semiotics of the abacus
model might be the route to understanding
the significance of models and modelling
in the RME tradition more generally. We
suggest that the role of the abacus as a
model in this case might be typical of other
models in RME. Indeed, Williams & Wake
(in press) provide an analysis of the role of
the number line in a similar vein.

In applying Radford’s theory in a very

different context we are bound to point out
certain differences in the two cases: for
instance, the differing roles of contextual
generalisation in the two cases. Though the
adaptation of the theory was necessary at
some points, we have shown that this
theory can be a powerful tool of analysis.
The question arises as to whether the
instruction method adopted here gains or
perhaps loses something by eliding
contextual generalisation: thus we suggest
that Radford’s categories might in fact be
regarded as raising design-related issues
as well as providing tools of analysis.
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Objetos, significados, representaciones

semióticas y sentido

Bruno D’Amore 1

RESUMEN

En este artículo intento mostrar una consecuencia que algunas veces se evidencia en
las transformaciones semióticas de tratamiento y conversión de una representación
semiótica a otra, cuyo sentido deriva de una práctica compartida. El pasaje de la
representación de un objeto matemático a otra, por medio de transformaciones, de una
parte conserva el significado del objeto mismo, pero, en ocasiones, puede cambiar su
sentido. Este hecho está aquí detalladamente evidenciado por medio de un ejemplo,
pero insertándolo en el seno de un amplio marco teórico que pone en juego los objetos
matemáticos, sus significados y sus representaciones.

PALABRAS CLAVE : Registros  semióticos,  sentido  de  un objeto matemático,
objeto matemático, cambio de sentido.

ABSTRACT

In this paper, I want to illustrate a phenomenon related to the treatment and conversion
of semiotic representations whose sense derives from a shared practice. On the one
hand, the passage from one representation of a mathematical object to another, through
transformations, maintains the meaning of the object itself, but on the other hand,
sometimes can change its sense. This is shown in detail through an example, inserted
within a wide theoretical framework that takes into account mathematical objects, their
meanings and their representations.

KEY WORDS:  Semiotic  registers,  sense of a mathematical object, mathematical
object, change of sense.
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RESUMO

Neste artigo intento mostrar uma conseqüência que algumas vezes se evidencia nas
transformações semióticas de tratamento e conversão de uma representação semiótica
a outra, cujo sentido deriva de uma pratica compartida. A passagem da representação
de um objeto matemático a outra, por meio de transformações, de uma parte conserva
o significado do objeto mesmo, mas, em ocasiões, pode mudar seu sentido. Este fato
está aqui detalhadamente evidenciado por meio de um exemplo, pero inserindo-o em
um amplo marco teórico que trabalha os objetos matemáticos, seus significados e suas
representações.

PALAVRAS CHAVES:  Registros semióticos, sentido de um objeto matemático,
objeto matemático, mudança de sentido.

RÉSUMÉ

Dans cet article, je montre un phénomène relié au traitement et à la conversion des
représentations sémiotiques dont le sens provient de pratiques partagées. D’une part,
le passage de la représentation d’un objet mathématique à une autre représentation, à
travers des transformations, conserve le sens de l’objet lui-même. D’autre part, ce
passage peut entraîner quelquefois une modification du sens. Ce phénomène est ici
mis en évidence à travers un exemple inséré dans un cadre théorique ample qui met en
jeu les objets mathématiques, leurs significations et leurs représentations.

MOTS CLÉS:   Registre   sémiotique,   sens  d´ un  objet  mathématique,objet
mathématique, changement de sens.

Este trabajo está dividido en dos partes.
En la primera parte se discuten aspectos
de carácter epistemológico, ontológico y
semiótico desarrollados en algunos
marcos teóricos de investigación en
didáctica de la matemática.

En la segunda, a través de la narración de
un episodio de sala de clase, se propone
una discusión sobre la atribución de
sentidos diversos de varias
representaciones semióticas en torno a un
mismo objeto matemático.

Primera parte

1. Un recorrido

1.1. Ontología y conocimiento

En diversos trabajos de finales de los años
80 y 90 se declaraba que, mientras el
matemático puede no interrogarse sobre el
sentido de los objetos matemáticos que usa
o sobre el sentido que tiene el conocimiento
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matemático, la didáctica de la matemática
no puede obviar dichas cuestiones (ver
D’Amore, 1999, pp. 23-28). En un trabajo
reciente, Radford resume la situación de la
manera siguiente:

Se puede sobrevivir muy bien haciendo
matemática sin adoptar una ontología
explícita, esto es, una teoría sobre la
naturaleza de los objetos matemáticos. Es
por eso que es casi imposible inferir de un
artículo técnico en matemáticas la posición
ontológica de su autor. (...) La situación es
profundamente diferente cuando hablamos
del saber matemático. (…) Cuestiones
teóricas acerca del contenido de ese saber
y de la manera como dicho contenido es
transmitido, adquirido o construido nos ha
llevado a un punto en el que no podemos
seguir evitando hablar seriamente de
ontología. (Radford, 2004, p. 6)

El debate es antiguo y se puede señalar
como punto de partida la Grecia clásica.
Como he señalado en trabajos anteriores,
dicho debate está enmarcado por una
creencia ontológica que parte del modo que
tienen los seres humanos de conocer los
conceptos (D’Amore, 2001a,b; 2003a,b).
Radford retoma el debate y se detiene, en
particular, en el trabajo de Kant quien dice
que los individuos tienen un conocimiento

conceptual a priori gracias a una actividad
autónoma de la mente, independiente del
mundo concreto (Radford, 2004, pp. 5-7).

Como Radford pone en evidencia, el apriorismo
kantiano tiene raíces en la interpretación de la
filosofía griega hecha por San Agustín y su
influencia en los pensadores del Renacimiento.
Refiriéndose al matemático Pietro Catena
(1501-1576), por mucho tiempo profesor de la
Universidad de Padua y autor de la obra
Universa Loca (Catena, 1992), Radford afirma
que, para Catena, “los objetos matemáticos
eran entidades ideales e innatos” (Radford,
2004, p. 10). El debate se vuelve moderno, en
todo el sentido de la palabra, cuando, con Kant,
se logra hacer la distinción entre los “conceptos
del intelecto” (humano) y los “conceptos de
objetos”. Como Radford observa:

[Estos] conceptos del intelecto puro no
son conceptos de objetos; son más bien
esquemas lógicos sin contenido; su
función es hacer posible un
reagrupamiento o síntesis de las
intuiciones. La síntesis es llevada a cabo
por aquello que Kant identificó como una
de nuestras facultades cognitivas: el
entendimiento. (Radford, 2004, p. 15)

El siguiente gráfico presenta las ideas de
sentido y de comprensión en el lugar adecuado:

Objeto

Presentación 1 Presentación 2 Presentación 3

Síntesis de presentación en relación con conceptos de razón

s
e
n
t
i
d
o

c
o
m
p
r
e
n
s
i
ó
n

Objeto conocido

La relación entre los sentidos y la razón en la epistemología Kantiana (tomado de Radford, 2004, p. 15)
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1.2. Aproximación  antropológica

La línea de investigación antropológica
parece fundamental en la comprensión del
pensamiento matemático (D’Amore,
2003b). Dicha línea de investigación debe
atacar ciertos problemas, entre ellos el del
uso de signos y artefactos en la cultura.
En la aproximación antropológica al
pensamiento matemático que propone
Radford, el autor sugiere que

una aproximación antropológica no
puede evitar tomar en cuenta el hecho
de que el empleo que hacemos de las
diversas clases de signos y artefactos
cuando intentamos llegar a conocer
algo está subsumido en prototipos
culturales de uso de signos y
artefactos. (...) Lo que es relevante en
este contexto es que el uso de signos
y artefactos alteran la manera en que
los objetos conceptuales nos son
dados a través de nuestros sentidos
(…) Resumiendo, desde el punto de
vista de una epistemología
antropológica, la manera en que me
parece que puede resolverse el
misterio de los objetos matemáticos es
considerando dichos objetos como
patrones (patterns) fijados de actividad
humana; incrustados en el dominio
continuamente sujeto a cambio de la
práctica social reflexiva mediatizada.
(Radford, 2004, p. 21).

En esta línea de pensamiento, existe una
aceptación general de consenso:

Los objetos matemáticos deben ser
considerados como símbolos de
unidades culturales, emergentes de un
sistema de usos ligados a las
actividades de resolución de
problemas que realizan ciertos grupos

de personas y que van evolucionando
con el tiempo. En nuestra concepción,
es el hecho de que en el seno de
ciertas instituciones se realizan
determinados tipos de prácticas lo que
determina la emergencia progresiva de
los “objetos matemáticos” y que el
“significado” de estos objetos esté
íntimamente ligado con los problemas
y a la actividad realizada para su
resolución, no pudiéndose reducir este
significado del objeto a su mera
definición matemática. (D’Amore &
Godino, 2006, p. 14).

1.3. Sistema de prácticas

Tal acuerdo viene ulteriormente clarificado
por proposiciones explícitas:

La noción de “significado institucional
y personal de los objetos matemáticos”
implica a las de “práctica personal”,
“sistema de prácticas personales”,
“objeto personal (o mental)”,
herramientas útiles para el estudio de
la “cognición matemática individual”
(Godino & Batanero, 1994; 1998).
Cada una de tales nociones tiene su
correspondiente versión institucional.
Es necesario aclarar que con estas
nociones se trata de precisar y hacer
operativa la noción de “relación
personal e institucional al objeto”
introducida por Chevallard (1992).
(D’Amore & Godino, 2006, p. 28)

Aquello que nosotros entendemos por
“sistema de prácticas personales” está en
la misma línea de la aproximación
semiótica antropológica (ASA) de Radford:

En la aproximación semiótica
antropológica (ASA) a la que
estamos    haciendo     referencia,   la
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idealidad del objeto conceptual está
directamente ligada al contexto
histórico-cultural. La idealidad de los
objetos matemáticos es decir de
aquello que los vuelve generales es
completamente tributaria de la
actividad humana. (Radford, 2005, p.
200).

Los aspectos sociológicos de esta adhesión
a la actividad humana y a la práctica social
son así confirmados:

Considero que el aprendizaje
matemático de un objeto O por parte
de un individuo I en el seno de la
sociedad S no sea más que la
adhesión de I a las prácticas que los
otros miembros de S desarrollan
alrededor del  objeto dado O.
(D’Amore, en D’Amore, Radford &
Bagni, 2006, p. 21)

De igual manera, “la práctica de sala de clase
puede considerarse como un sistema de
adaptación del alumno a la sociedad”
(Radford, en D’Amore, Radford & Bagni,
2006, p. 27).

1.4.Objeto y objeto matemático

Se necesita, sin embargo, dar una definición
de este “objeto matemático”. Para lograrla
preferimos recurrir a una generalización de
la idea de Blumer sugerida por (Godino,
2002): Objeto matemático es todo lo que es
indicado, señalado, nombrado cuando se
construye, se comunica o se aprende
matemáticas. Esta idea es tomada de
Blumer (Blumer 1969, ed. 1982, p. 8): un
objeto es “cualquier entidad o cosa a la cual
nos referimos, o de la cual hablamos, sea
real, imaginaria o de cualquier otro tipo.

En un trabajo anterior hemos sugerido
considerar los siguientes tipos de objetos
matemáticos:

• “lenguaje” (términos, expresiones,
notaciones, gráficos, ...) en sus diversos
registros (escrito, oral, gestual, ...)

• “situaciones” (problemas, aplicaciones
extra-matemáticas, ejercicios, ...)

• “acciones” (operaciones, algoritmos,
técnicas de cálculo, procedimientos, ...)

• “conceptos” (introducidos mediante
definiciones o descripciones) (recta,
punto, número, media, función, ...)

• “propiedad o atributo de los objetos”
(enunciados sobre conceptos, ...)

• “argumentos” (por ejemplo, los que se
usan para validar o explicar los
enunciados, por deducción o de otro tipo,
...).

A su vez estos objetos se organizan en
entidades más complejas: sistemas
conceptuales, teorías,... (D’Amore &
Godino, 2006, p. 28-29).

En el trabajo citado, se aprovecha la idea
de función semiótica:

se dice que se establece entre dos
objetos matemáticos (ostensivos o
no ostensivos) una función
semiótica cuando entre dichos
objetos se establece una
dependencia representacional o
instrumental, esto es, uno de ellos
se pone en el lugar del otro o uno
es usado por otro. (D’Amore &
Godino, 2006, p. 30).

Y, más allá:

Los objetos matemáticos que intervienen
en las prácticas matemáticas y los
emergentes de las mismas, según el
juego de lenguaje en que participan,
pueden ser considerados desde las
siguientes facetas o dimensiones
duales:
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•  personal   –   institucional :   como     ya
hemos indicado, si los sistemas de
prácticas son compartidos en el seno
de una institución, los objetos
emergentes se consideran “objetos
institucionales”; mientras que si estos
sistemas son específicos de una
persona los consideramos como
“objetos personales”;

• ostensivos (gráficos, símbolos, ...), no
ostensivos (entidades que se evocan al
hacer matemáticas, representados en
forma textual, oral, gráfica, gestual, ...);

• extensivo – intensivo: esta dualidad
responde a la relación que se establece
entre un objeto que interviene en un
juego de lenguaje como un caso
particular (un ejemplo concreto: la
función y=2x+1) y una clase más
general o abstracta (la familia de
funciones, y = mx+n);

• elemental – sistémico: en algunas
circunstancias los objetos matemáticos
participan como entidades unitarias
(que se suponen son conocidas
previamente), mientras que otras
intervienen como sistemas que se
deben descomponer para su estudio;

• expresión – contenido: antecedente y
consecuente  (significante, significado)
de cualquier función semiótica.

Estas facetas se presentan agrupadas en
parejas que se complementan de manera
dual y dialéctica. Se consideran como
atributos aplicables a los distintos objetos
primarios y secundarios, dando lugar a
distintas “versiones” de dichos objetos.
(D’Amore & Godino, 2006, p. 31).

Pero, si se hace referencia a la práctica
de representación lingüística: “Creo que
se deben distinguir dos tipologías de
objetos en el ámbito de la creación de la
competencia matemática (aprendizaje
matemático): el objeto matemático mismo

y el objeto lingüístico que lo expresa”
(D’Amore, en D’Amore, Radford & Bagni,
2006, p. 21).

En los siguientes partes de este articulo,
será discutido lo referente a la
representación, de forma especifica.

1.5. Aprendizaje de objetos

En los intentos hechos por sintetizar las
dificultades en el aprendizaje de conceptos
(D’Amore, 2001a, b, 2003a) he recurrido
en varias ocasiones a la idea que se
encuentra en la paradoja de Duval (1993):

de una parte, el aprendizaje de los
objetos matemáticos no puede ser
más que un aprendizaje conceptual y,
de otra, es sólo por medio de
representaciones semióticas que es
posible una actividad sobre los objetos
matemáticos. Esta paradoja puede
constituir un verdadero círculo vicioso
para el aprendizaje. ¿Cómo sujetos en
fase de aprendizaje no podrían no
confundir los objetos matemáticos con
sus representaciones semióticas si
ellos sólo pueden tener relación con
las representaciones semióticas? La
imposibilidad de un acceso directo a
los objetos matemáticos, fuera de toda
representación semiótica, vuelve la
confusión casi inevitable. Y, por el
contrario, ¿cómo pueden ellos adquirir
el dominio de los tratamientos
matemáticos, necesariamente ligados
con las representaciones semióticas,
si no tienen ya un aprendizaje
conceptual de los objetos
representados? Esta paradoja es aún
más fuerte si se identifican actividades
matemáticas y actividades
conceptuales y si se consideran las
representaciones semióticas como
secundarias o extrínsecas. (Duval,
1993, p. 38)
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Estas frases reclaman fuertemente no
solamente un cierto modo de concebir la
idea de semiótica sino también su relación
con la epistemología. Como apunta
Radford: “El problema epistemológico
puede resumirse en la siguiente pregunta:
¿cómo llegamos a conocer los objetos
generales, dado que no tenemos acceso
a éstos sino a través de representaciones
que nosotros mismos nos hacemos de
ellos?” (Radford, 2005, p. 195).

1.6.La representación de los objetos

A propósito de la representación de los
objetos, Radford menciona que

En una célebre carta escrita el 21 de
febrero de 1772, Kant pone en duda el
poder de nuestras representaciones.
En esta carta, enviada a Herz, Kant
dice: “¿sobre qué fundamento reposa
la relación de lo que llamamos
representación y objeto
correspondiente?”. En esa carta, Kant
cuestiona la legitimidad que tienen
nuestras representaciones para
representar fielmente al objeto. En
términos semióticos, Kant cuestiona la
adecuación del signo. (…) La duda
kantiana es de orden epistemológico.
(Radford, 2005, p. 195)

Todo esto pone en juego, de forma
particular, la idea de signo, dado que para
la matemática esta forma de
representación es específica; el signo es
de por sí especificación de lo particular,
pero esto puede ser interpretado dando
sentido a lo general; al respecto Radford
nota que: “Si el matemático tiene derecho
a ver lo general en lo particular, es, como
observa Daval (1951, p. 110) ‘porque está
seguro de la fidelidad del signo. El signo
es la representación adecuada del
significado (signifié)’ ”. (Radford, 2005, p.
199).

Pero los signos son artefactos, objetos a
su vez “lingüísticos” (en sentido amplio),
términos que tienen el objetivo de
representar para indicar:

[La] objetivación es un proceso cuyo
objetivo es mostrar algo (un objeto)
a alguien. Ahora bien, ¿cuáles son
los medios para mostrar el objeto?
Esos medios son los que llamo
medios semióticos de objetivación.
Estos son objetos, artefactos,
términos lingüísticos y signos en
general que se utilizan con el fin de
volver aparente una intención y de
llevar a cabo una acción. (Radford,
2005, p. 203)

Estos signos tienen múltiples papeles,
sobre los cuales no entro en detalle para
evitar grandes tareas que ligan signo -
cultura - humanidad: “la entera cultura es
considerada como un sistema de signos
en los cuales el significado de un
significante se vuelve a su vez significante
de otro significado o de hecho el
significante del propio significado”. (Eco,
1973, p. 156)

No último en importancia, es el “papel
cognitivo del signo” (Wertsch, 1991;
Kozoulin, 1990; Zinchenko, 1985) sobre el
cual no profundizo con el fin de abreviar,
pero, no sin antes reconocerlo, en las
bases mismas de la semiótica general:
“todo proceso de significación entre seres
humanos (...) supone un sistema de
significaciones como propia condición
necesaria” (Eco, 1975, p. 20; el cursivo es
del Autor), lo que quiere decir un acuerdo
cultural que codifica e interpreta; es decir,
produce conocimiento.

La elección de los signos, también y
básicamente cuando se componen en
lenguajes, no es neutra o independiente;
esta elección señala el destino en el cual
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se expresa el pensamiento, el destino de la
comunicación; por ejemplo:

El lenguaje algebraico impone una
sobriedad al que piensa y se expresa,
una sobriedad en los modos de
significación que fue impensable antes
del Renacimiento. Impone lo que
hemos llamado en otro trabajo una
contracción semiótica. Presupone
también la pérdida del origo. (Radford,
2005, p. 210)

La pérdida del origo (es decir del origen, del
inicio) fue discutida por Radford también en
otros trabajos (2000, 2002, 2003).

Y es propio sobre este punto que se cierra
mi larga premisa, que es también el punto
de partida para lo que sigue.

Segunda parte

2. Objeto, su significado compartido,
sus representaciones semióticas: la

narración de un episodio

2.1.El episodio

Estamos en quinto de primaria y el docente
ha desarrollado una lección en situación a-
didáctica sobre los primeros elementos de
la probabilidad, haciendo construir a los
alumnos, por lo menos a través de unos
ejemplos, la idea de “evento” y de
“probabilidad de un evento simple”. Como
ejemplo, el docente ha hecho uso de un dado
normal de seis caras, estudiando los
resultados casuales desde un punto de vista
estadístico. Emerge una probabilidad
frecuencial, pero que es interpretada en
sentido clásico. En este punto el docente
propone el siguiente ejercicio:

Calcular la probabilidad del siguiente evento:
lanzando un dado se obtenga  un número par.

Los alumnos, discutiendo en grupo y
básicamente compartiendo prácticas bajo
la dirección del docente, alcanzan a decidir
que la respuesta se expresa con la fracción

      porque  “los   resultados   posibles  al
3
6
lanzar un dado son 6 (el denominador)
mientras que los resultados que hacen
verdadero el evento son 3 (el numerador)”.

Después de haber institucionalizado la
construcción de este saber, satisfecho de
la eficaz experiencia, contando con que
este resultado fue obtenido más bien
rápidamente y con el hecho de que los
alumnos han demostrado gran habilidad
en el manejo de las fracciones, el docente
propone  que,  dada   la   equivalencia  de
    

y     , se  puede expresar esta50
100

3
6
probabilidad también con la escritura 50%,
que es mucho más expresiva: significa que
se tiene la mitad de la probabilidad de
verificarse el evento respecto al conjunto
de los eventos posibles, tomado como 100.
Alguno de los alumnos nota que “entonces

es válida también [la fracción]   ”; la1
2

propuesta es validada a través de las
declaraciones de quien hace la propuesta,
rápidamente es acogida por todos y, una
vez más, institucionalizada por el docente.

2.2. Análisis semiótico

Si se analizan las representaciones
semióticas diferentes que han emergido
en esta actividad, relativas al mismo
evento: “obtener un número par al lanzar
un dado”, son encontradas, por lo menos,
las siguientes:

• registro semiótico lengua natural:
probabilidad de obtener un número par
al lanzar un dado
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• registro semiótico lenguaje de las

fracciones:       ,        ,

• registro semiótico lenguaje del
porcentaje: 50%.

2.3. El sentido compartido por diversas
representaciones  semióticas

Cada una de las representaciones
semióticas precedentes es el significante
“aguas abajo” del mismo significado
“aguas arriba” (Duval, 2003). El “sentido”
compartido a propósito de aquello que se
estaba construyendo estaba presente
idénticamente y por tanto la práctica
matemática efectuada y así descrita ha
llevado a transformaciones semióticas
cuyos resultados finales fueron fácilmente
aceptados:

• conversión:   entre    la   representación
semiótica expresada en el registro

lenguaje natural y

• tratamiento: entre       ,         y

• conversión: entre  y 50%.

50
100

3
6

1
2

3
6

50
100

3
6

1
2

50
100

2.4. Conocimientos previos necesarios

Entran en juego diversos conocimientos,
aparentemente cada uno de estos bien
construido, que interactúan entre ellos:

• conocimiento y uso de las fracciones

• conocimiento y uso de los porcentajes

• conocimiento  y  uso  del  evento: obtener
un número par lanzando un dado.

Cada uno de estos conocimientos se
manifiesta a través de la articulación en

un todo unitario y la aceptación de las
prácticas en el grupo clase.

2.5. Continuación del episodio: la
pérdida del sentido compartido a causa

de transformaciones semióticas

Terminada la sesión, se propone a los

alumnos  la  fracción         y se pide si,

siendo  equivalente a         ,  también     esta

4
8

3
6

fracción representa el evento explorado
poco antes. La respuesta unánime y
convencida fue negativa. El mismo
docente, que antes había dirigido con

seguridad  la  situación,  afirma  que  “ 4
8

no puede representar el evento porque las
caras de un dado son 6 y no 8”. El
investigador pide al docente de explicar
bien su pensamiento al respecto; el
docente declara entonces que “existen no
sólo dados de 6 caras, sino también dados
de 8 caras; en tal caso, y sólo así, la

fracción      representa el resultado

obtener un número par al lanzar un dado”.

Examinaré lo que está sucediendo en el
aula desde un punto de vista semiótico;
pero me veo obligado a generalizar la
situación.

3. Un simbolismo para las bases de la
semiótica

En esta parte, son util izadas las
definiciones usuales y de la simbología
introducida en otros trabajos (D’Amore,
2001a, 2003a,b):

semiótica      =df representación realizada
por medio de signos

4
8
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nueva representación     en el
mismo registro semiótico rm

           transformación de registro
           CONVERSIÓN

nueva representación
en     otro   registro    semiótico
(m, n, i, j, h = 1, 2, 3, …)

4. Volvamos al episodio

• Existe    un   objeto  ( significado)
matemático O

1
 por representar:

probabilidad de obtener un número par
al lanzar un dado;

• se le da un sentido derivado de la
experiencia que se piensa aceptada, en
una práctica social construida en
cuanto compartida en el aula;

• se elige un registro semiótico rm y en
éste se representa O

1
: Rm

i
(O

1
);

•  se        realiza         un          tratamiento:
       ;

• se       realiza        una      conversión:
                                   ;

• se interpreta Rm
j
(O

1
) reconociendo en

esto el objeto (significado) matemático
O

2
;

• se interpreta Rn
h
(O

1
) reconociendo en

esto el objeto (significado) matemático
O

3
.

¿Qué relación existe entre O
2
, O

3
 y O

1
?

Se puede reconocer identidad; y esto
significa entonces que existe un
conocimiento previo, en la base  sobre la
cual la identidad puede ser establecida.

Rm
i(O1) → Rn

h(O1)

Rm
i(O1) → Rm

j(O1)
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características
        de la
     semiótica

concepto A para representar

elección de los rasgos distintivos de A

REPRESENTACIÓN  de  A: Rm
i
(A)  en un

registro semiótico dado rm

              transformaciones de representación
TRATAMIENTO

2

noética    =
df
   adquisición conceptual de

un objeto2.

Se indica, de ahora en adelante:

rm    =
df

registro semiótico m-ésimo

Rm
i
(A) =

df
representación semiótica

i-ésima de un concepto A en el registro
semiótico rm (m = 1, 2, 3, …; i = 1, 2, 3, …).

Se puede notar que, si cambia el registro
semiótico, cambia necesariamente la
representación semiótica, mientras que no
es posible asegurar lo contrario; es decir,
puede cambiar la representación semiótica
manteniéndose aún el mismo registro
semiotico.

Uso un gráfico para ilustrar la situación,
porque me parece mucho más eficaz3:

      Para Platón,  la  noética  es  el  acto  de  concebir  a  través  del  pensamiento;  para  Aristóteles,  es el acto mismo de

comprensión conceptual.

     
Hago referencia a Duval (1993).3

representación
tratamiento
conversión

(i ≠ j):Rm
j(A)

(h≠ i,h ≠ j):Rn
h(A)

r n (n ≠ m)

( imp l i can
actividades
cognitivas
diversas)
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Rm
i(O1) → Rn

k (O1)

Rm
i(O1) → Rm

k (O1)

Rm
i(O1) → Rm

j(O1)

 187

De   hecho,    se  puede   no   reconocer la     identidad,    en      el  sentido   que   la
“interpretación” es o parece ser diferente, y  entonces  se  pierde el sentido del
objeto (significado) de partida O

1
.

Un esquema como el siguiente puede resumir lo que ha sucedido en el aula desde un punto
de vista complejo, que pone en juego los elementos que se desea poner en conexión entre
ellos: objetos, significados, representaciones semióticas y sentido:

objeto-significado O
1

sentido

representación: Rm
i 
(O

1
)

conflicto  entre  el
sentido de O

1
 y el

sentido de O
2
 / O

3

conversión              tratamiento

Rn
h 
(O

1
)              Rm

j 
(O

1
)

interpretación

O
3

     O
2

En el ejemplo aquí discutido:

•  objeto - significado  O
1
: “probabilidad de

obtener un número par al lanzar un
dado”;

•  sentido: la experiencia compartida como
práctica de aula en situación a-didáctica
y bajo la dirección del docente, lleva a
considerar que el sentido de O

1
 sea el

descrito por los alumnos y deseado por
el docente: tantos resultados posibles y,
respecto a estos, tantos resultados
favorables al verificarse el evento;

• elección  de  registro  semiótico  rm:
números racionales Q expresados bajo
forma   de    fracción ;   representación:

  
  Rm

i
(O

1
):      ;

•  tratamiento:                                   , es decir,

de     a     ;

• tratamiento:                                  , es decir,

de      a     ;

•  conversión:                                   ,es decir,

de      a 50%;

• se interpreta Rm
j
(O

1
) reconociendo en

esto el objeto (significado) matemático
O

2
;

• se interpreta Rm
k
(O

1
) reconociendo en

esto el objeto (significado) matemático
O

3
;

• se interpreta Rn
h
(O

1
) reconociendo en

esto el objeto (significado) matemático
O

4
.

¿Qué relación existe entre O
2
, O

3
, O

4
 y O

1
?

En algunos casos  (O
2
, O

4
),  se  reconoce

3
6

3
6

 
1
2

3
6

 
4
8

3
6
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5. Otros episodios

En seguida, son propuestos algunos
ejemplos de interpretación solicitados a
estudiantes que están cursando los últimos
semestres en la universidad, programa de
matemática; aquellos indicados como
“sentidos” son mayormente compartidos
entre los estudiantes entrevistados:

1)

sentido: de “una circunferencia” a “una
suma que tiene el mismo valor de su
recíproca”; Investigador: “Pero, ¿es o no

identidad de significantes; y esto significa
que existe de base un conocimiento ya
construido que permite reconocer el mismo
objeto; el sentido está compartido, es
único;en otra situación (O3), no se le
reconoce la identidad de significante, en
el sentido que la “interpretación” es o
parece ser diferente, y entonces se pierde
el sentido del objeto (significado) O1.

La temática relativa a más
representaciones del mismo objeto está
presente en Duval (2005).

No está dicho que la pérdida de sentido
se presente sólo a causa de la conversión;
en el ejemplo aquí dado, tal como ya fue
discutido, se presentó a causa de un

tratamiento (el pasaje de      a     ).

La interpretación de       dada por el docente

no admitía como objeto plausible el mismo
O1 que había tomado origen del sentido
compartido que había llevado a la

interpretación      .

3
6

 
4
8

3
6

4
8

x2 + y2 + 2xy−1= 0 x + y =
1

x + y
TRATAMIENTO

es una circunferencia?”; A: “Absolutamente
no, una circunferencia debe tener                 ”;
B: “Si se simplifica, ¡si!” [es decir, es la
transformación semiótica de tratamiento
que da o no cierto sentido];

2)

sentido: de “la suma de tres naturales
consecutivos” a “el triple de un número más
3”; Investigador: “Pero, ¿se puede pensar
como suma de tres naturales
consecutivos?”; C: “No, ¡no entra nada!”;

3)

x2 + y2

n + (n +1)+ (n + 2) 3n + 3

n −1( )+ n + (n +1) 3n

sentido: de “la suma de tres enteros
consecutivos” a “el triple de un número
natural”; Investigador: “Pero, ¿se puede
pensar como suma de tres enteros
consecutivos?”; D: “No, así no, así es la
suma de tres números iguales, es decir      ”.

6. Representaciones de un mismo
objeto dado por el docente de

primaria, consideradas apropiadas
para sus alumnos

En un curso de actualización para docentes
de primaria, fue discutido el tema: Primeros
elementos de probabilidad. Al final de la
unidad, se pidió a los docentes representar
el objeto matemático: “obtener un número
par al lanzar un dado”, usando un simbolismo
oportuno que fuese el más apropiado, según
ellos, a los alumnos de primaria. Fueron
dadas a conocer todas las representaciones
propuestas y se sometieron a votación. En
seguida se  muestran los resultados obtenidos
en orden de  preferencia (del mayor al menor):

n
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3
6

1
2   

•••
ooo

  

ooo
6   

ooo
•••• ••

2 ⋅ 4 ⋅6
1⋅2 ⋅ 3⋅ 4 ⋅5 ⋅6

           50%                         (tres y tres)

(tres sobre seis)           (tres sobre seis)

(2, 4, 6 respecto de 1, 2, 3, 4, 5, 6)

(figural-operativa)   1      2      3      4      5      6

OK           OK           OK

La importancia de tomar en consideración
el análisis de la producción de los alumnos
es subrayada así por Duval (2003):

No se puede subrayar la importancia
de las descripciones, en la adquisición
de conocimientos científicos así como
en las primeras etapas de los
aprendizajes matemáticos, sin afrontar
otra cuestión fundamental tanto para
la investigación como para los
docentes: el análisis de las
producciones de los alumnos. Pues es
en el cuadro del desarrollo de la
descripción, que se obtienen las
producciones más personales y más
diversificadas, dado que éstas pueden
ser hechas verbalmente o con la ayuda
de diseños, de esquemas ... En este
caso se trata, para la investigación, de
una cuestión metodológica y, para los
docentes, de una cuestión diagnóstica.
Veremos que cada análisis de las
producciones de los alumnos requiere
que se distinga con atención en cada
producción semiótica, discursiva o no
discursiva, diversos niveles de
articulación del sentido, que no revelan
las mismas operaciones. (p. 16)

En el ejemplo discutido en este parágrafo
6, los “alumnos” son docentes de escuela
primaria que frecuentan el curso, mientras
los “docentes” son los profesores
universitarios que impartían las lecciones .4

Diversos pueden ser los análisis de las
precedentes producciones de los alumnos
- docentes, evidenciadas al inicio de este
parágrafo, pero se prefiere seguir la
bipartición que, de nuevo, se encuentra en
Duval (2003):

[N]o se debe confundir aquello que
llamaremos una tarea “real” de
descripción y una tarea “puramente
formal” de descripción. (...). Una tarea
de descripción es real cuando
requiere una observación del objeto
de la situación que se desea describir
(...). Aquí, el alumno tiene acceso a
cada uno de los dos elementos de la
pareja {objeto, representación del
objeto}, independientemente uno del
otro. Al contrario, una tarea de
descripción es puramente formal
cuando se limita a un simple cambio
de registro de representación:
descripción verbal a partir de un
diseño o de una “imagen” o viceversa.
El alumno sólo tiene un acceso
independiente al objeto representado.
Las descripciones formales son
entonces tareas de conversión que
buscan respetar la invarianza de
aquello que representan. (p. 19)

Creo que esta distinción de Duval ayuda a
explicar, por lo menos en parte, el episodio
narrado en los parágrafos 2 y 5 de este
artículo:

4      Que este “cambio de rol” pueda ser concebido como plausible es ampliamente demostrado por la literatura internacional;

por brevedad me limito a citar sólo el amplio panorama propuesto en el ámbito PME por Llinares & Krainer (2006), con

abundante bibliografía específica.
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    horas a  a$  cada hora, más el costo fijo
de  b$  ; los alumnos y el docente llegan a
la  representación  semiótica:        ;
se sigue la transformación de tratamiento

3
6

7
14
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Respecto a un objeto matemático
observable, conocido sobre la base de
prácticas compartidas, la “descripción
real” responde plenamente a las
características del objeto, es decir de
la práctica realizada alrededor de éste
y con éste, y por tanto del sentido que
todo esto adquiere por parte de quien
dicha práctica explica. Pero el uso de
transformaciones semióticas a veces
lleva a cambios sustanciales de dichas
descripciones, convirtiéndose en una
“descripción puramente formal”,
obtenida con prácticas semióticas sí
compartidas, pero que niegan un
acceso al objeto representado o, mejor,
le niegan la conservación del sentido.
(Duval, 2003, p. 18)

7. Otros episodios semióticos
tomados de la práctica matemática

compartida en aula

7.1.Probabilidad y fracciones

He repetido el experimento descrito en el
parágrafo 2, con estudiantes que han
aprobado cursos más avanzados de
matemática y con estudiantes en formación
como futuros docentes de escuela primaria
y de secundaria. Si la conversión que hace
perder    el    sentido   en    el   pasaje  de

tratamiento de      a     es un ejemplo fuerte

de pérdida de sentido, lo es aún más el de

pasar de       a      ; mientras lo es en menor

medida la conversión de        a 0.5.

3
6

 
4
8

3
6

7.2. Un ejemplo en el primer año de
escuela secundaria superior

Objeto  matemático: El  gasto  total de  y$
para  el  alquiler de algún instrumento por

x

y = ax+ b

x −
y
a

+
b
a

= 0que lleva a                              ,  que  se representa

como:

Figura 1

y es interpretada universalmente como
“una recta”.

Dicha representación semiótica obtenida
por tratamiento y conversión, a partir de la
representación inicial, no se le reconoce
como el mismo objeto matemático de
partida; ésta asume otro sentido.

7.3. Un ejemplo en un curso para
docentes de escuela primaria en

formación

Objeto matemático: La suma (de Gauss)
de los primeros 100 números naturales
positivos; resultado semiótico final
después de sucesivos cambios operativos
con algunas transformaciones de
conversión y tratamiento: 101•50; esta
representación no se reconoce como
representación del objeto de partida; la
presencia del signo de multiplicación dirige
a los futuros docentes a buscar un sentido
en objetos matemáticos en los cuales
aparezca el término “multiplicación (o
términos similares).

b

O

−
b
a
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7.4. Un primer ejemplo en un curso
(postgrado) de formación para futuros

docentes de escuela secundaria

Objeto matemático: La suma de dos
cuadrados es menor que 1; representación
semiótica      universalmente     aceptada:

  ; después de cambios de
representación semiótica, siguiendo
operaciones        de         tratamiento:

    y  de conversión:

x2 + y2 < 1

(x + iy )(x − iy) < 1

1

Figura 2

hasta llegar a: .

No obstante que las diversas
transformaciones se efectúen con total
evidencia y en forma explícita, discutiendo
cada uno de los cambios de registro
semiótico, ninguno de los estudiantes
futuros docentes, está dispuesto a admitir
la unicidad del objeto matemático en juego.
La última representación es interpretada
como “desigualdad paramétrica en C”; el
sentido fue modificado.

7.5. Un segundo ejemplo en un curso
(postgrado) de formación para futuros

docentes de escuela secundaria

A) Objeto matemático: Sucesión de los
números triangulares; interpretación y
conversión: 1, 3, 6, 10, …; cambio de
representación por tratamiento: 1, 1+2,
1+2+3, 1+2+3+4,….; esta representación
es reconocida como “sucesión de las
sumas parciales de los naturales
sucesivos”.

ρ2 + i 2 < 0

B) Objeto matemático: Sucesión de los
números cuadrados; interpretación y
conversión: 0, 1, 4, 9,…; cambio de
representación por tratamiento: 0, (0)+1,
(0+1)+3, (0+1+3)+5,…; esta
representación es reconocida como “suma
de las sumas parciales de los impares
sucesivos”.

En ninguno de los casos precedentes
descritos brevemente, los alumnos
pudieron aceptar que el sentido de la
representación semiótica obtenida
finalmente, después de transformaciones
semióticas evidenciadas, coincide con el
sentido del objeto matemático de partida.

8. Conclusiones

No parecen necesarias largas conclusiones.
Urge sólo evidenciar cómo el sentido de un
objeto matemático sea algo mucho más
complejo respecto a la pareja usual (objeto,
representaciones del objeto); existen
relaciones semióticas entre las parejas de
este tipo:

(objeto, representación del objeto) –
(objeto, otra representación del objeto),

relaciones derivadas de transformaciones
semióticas entre las representaciones del
mismo objeto, pero que tienen el resultado
de hacer perder el sentido del objeto de
partida. Si bien, tanto el objeto como las
transformaciones semióticas son el
resultado de prácticas compartidas, los
resultados de las transformaciones pueden
necesitar de otras atribuciones de sentido
gracias a otras prácticas compartidas. Lo
que enriquece de mayor interés todo estudio
sobre ontología y conocimiento.

Los fenómenos descritos en la primera parte
de  este  artículo  pueden  ser usados para
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completar la visión que Duval ofrece del
papel de las múltiples representaciones de
un objeto en la comprensión de dicho
objeto, y también para “romper el círculo
vicioso” de su paradoja. En realidad cada
representación lleva asociado un
“subsistema de prácticas” diferentes, de
donde emergen objetos diferentes (en el
parágrafo anterior denominados: O1, O2, O3

y O4). Pero la articulación de estos objetos
en otro más general requiere un cambio
de perspectiva, el paso a otro contexto en
el que se plantee la búsqueda de la
estructura común en el sistema de
prácticas global en el que intervienen los
distintos “objetos parciales”.

Sin duda, el uso de distintas
representaciones y su progresiva articulación
enriquecen el significado, el conocimiento,

la comprensión del objeto, pero también su
complejidad. El objeto matemático se
presenta, en cierto sentido, como único,
pero en otro sentido, como múltiple.
Entonces, ¿cuál es la naturaleza del objeto
matemático? No parece que haya otra
respuesta que no sea la estructural, formal,
gramatical (en sentido epistemológico), y
al mismo tiempo la estructural, mental,
global, (en sentido psicológico) que los
sujetos construimos en nuestros cerebros
a medida que se enriquecen nuestras
experiencias.

Es obvio que estas observaciones abren
las puertas a futuros desarrollos en los
cuales las ideas que parecen diversas,
confluyen por el contrario en el intento de
dar una explicación a los fenómenos de
atribución de sentido.
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Are registers of representations and problem

solving processes on functions

compartmentalized in students’ thinking?

Athanasios Gagatsis 1

Iliada Elia 1

Nikos Mousoulides 1

RESUMEN

El objetivo de este artículo es doble. En primer lugar, se hace un resumen superficial de
investigaciones sobre la compartimentación de diferentes registros de representación,
así como de las aproximaciones de resolución de problemas, relacionadas con el
concepto de función. En segundo lugar, se aportan elementos que clarifican las posibles
maneras que permiten superar el fenómeno de la compartimentación. Investigaciones
precedentes muestran que la mayoría de los alumnos de secundaria e, incluso de
universidad, tienen dificultades para cambiar, de forma flexible, los sistemas de
representación de funciones, de seleccionar y de utilizar aproximaciones apropiadas de
resolución de problemas. Los resultados de dos estudios experimentales previos, llevados
a cabo por miembros de nuestro equipo de investigación, centrados sobre la utilización
de aproximaciones no tradicionales de enseñanza y sobre el empleo de software
matemático, proveen pistas preliminares, en cuanto a la manera de cómo puede
superarse con éxito el fenómeno de la compartimentación.

PALABRAS CLAVE:  Aproximación algebraica, compartimentalización, función,
aproximación geométrica, resolución de problemas, registros de representación,
transformación de representaciones.

ABSTRACT

The purpose of the present study is twofold: first, to review and summarize previous
research on the compartmentalization of different registers of representations and problem
solving approaches related to the concept of function; second, to provide insights into
possible ways to overcome the phenomenon of compartmentalization. To this extent,
previous research shows that the majority of high school and university students
experience difficulties in flexibly changing systems of representations of function and in
selecting and employing appropriate approaches to problem solving. Two previous
experimental efforts, by the authors, focusing on the use of non-traditional teaching
approaches and on the use of mathematical software respectively, provided some initial
strategies for successfully overcoming the phenomenon of compartmentalization.
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KEY WORDS: Algebraic  approach,  compartmentalization, function, geometric
approach,   problem   solving,   registers  of  representation,  transformation of
representations.

RESUMO

O objetivo deste de artigo é duplo. Primeiro, é feito um resumo superficial de investigações
sobre a compartimentação de diferentes registros de representação, e aproximações
de resolução de problemas, apostas em relação ao de conceito de função. Em segundo
lugar, traz elementos que clarificam as possíveis maneiras que permitem superar o
fenômeno da compartimentarão. Investigações precedentes mostram que a maioria dos
alunos do ensino médio e, mesmo de universidade, tem dificuldades para alterar, de
maneira flexível, os sistemas de representação de funções, de escolher e utilizar
aproximações adequadas à resolução de problemas. Os resultados de dois estudos
experimentais prévios, levados a efeito por membros do nosso grupo de pesquisa,
centrados no utilização de aproximações não tradicionais de ensino e sobre ou emprego
de «software» matemático, fornecem pistas preliminares, quanto à maneira como pode
ser superar com sucesso o fenômeno da compartimentação.

PALAVRAS CHAVE:   Aproximação    algébrica,    compartimentação,   função,
geométrica  aproximação, solução  de  problema, registros  de  representação,
transformação de representações.

RÉSUMÉ

Le but de cet article est double. En premier lieu, il s’agit de faire un survol et une synthèse
des recherches sur la compartimentation de différents registres de représentation et des
approches de résolution de problèmes reliées au concept de fonction. En deuxième lieu,
il s’agit d’apporter un éclairage sur les manières possibles de surmonter le phénomène
de compartimentation. Des recherches antérieures montrent que la majorité des élèves
de l’école secondaire et de l’université ont de la difficulté à changer de façon flexible les
systèmes de représentation des fonctions ainsi qu’à sélectionner et à utiliser des
approches appropriées de résolution de problèmes. Deux efforts expérimentaux
préalables, menés par les auteurs, centrés sur l’utilisation des approches non-
traditionnelles d’enseignement et sur l’emploi de logiciels mathématiques, fournissent
des indications préliminaires quant à la manière de surmonter avec succès le phénomène
de compartimentation.

MOTS CLÉS:   Approche  algébrique,  compartimentation,  fonction,   approche
géométrique, résolution de problèmes, registres de représentation, transformation
de représentations.
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1.INTRODUCTION

During the last decades, a great deal of
attention has been given to the concept of
representation and its role in the learning
of mathematics. Nowadays, the centrality
of multiple representations in teaching,
learning and doing mathematics seems to
have become widely acknowledged (D’
Amore, 1998). Representational systems
are fundamental for conceptual learning
and determine, to a significant extent, what
is learnt (Cheng, 2000). A basic reason for
this emphasis is that representations are
considered to be “integrated” with
mathematics (Kaput, 1987). Mathematical
concepts are accessible only through their
semiotic representations (Duval, 2002). In
certain cases, representations, such as
graphs, are so closely connected with a
mathematical concept, that it is difficult for
the concept to be understood and acquired
without the use of the corresponding
representation. Any given representation,
however, cannot describe thoroughly a
mathematical concept, since it provides
information regarding merely a part of its
aspects (Gagatsis & Shiakalli, 2004).
Given that each representation of a
concept offers information about particular
aspects of it without being able to describe
it completely, the ability to use various
semiotic representations for the same
mathematical object (Duval, 2002) is an
important component of understanding.
Different representations referring to the
same concept complement each other and
all these together contribute to a global
understanding of it (Gagatsis & Shiakalli,
2004). The use of different modes of
representation and connections between
them represents an initial point in
mathematics education at which pupils use
one symbolic system to expand and
understand another (Leinhardt, Zaslavsky,

& Stain, 1990). Thus, the ability to identify
and represent the same concept through
different representations is considered as
a prerequisite for the understanding of the
particular concept (Duval, 2002; Even,
1998). Besides recognizing the same
concept in multiple systems of
representation, the ability to manipulate the
concept with flexibil ity within these
representations as well as the ability to
“translate” the concept from one system of
representation to another are necessary for
the acquisition of the concept (Lesh, Post,
& Behr, 1987) and allow students to see
rich relationships (Even, 1998).

Duval (2002) assigns the term “registers”
of representation to the diverse spaces of
representation in mathematics and
identifies four different types of registers:
natural language, geometric figures,
notation systems and graphic
representations. Mathematical activity can
be analyzed based on two types of
transformations of semiotic
representations, i.e. treatments and
conversions. Treatments are
transformations of representations, which
take place within the same register that
they have been formed in. Conversions are
transformations of representations that
consist in changing the register in which
the totality or a part of the meaning of the
initial representation is conserved, without
changing the objects being denoted. The
conversion of representations is
considered as a fundamental process
leading to mathematical understanding and
successful problem solving (Duval, 2002).
A person who can easily transfer her
knowledge from one structural system of
the mind to another is more likely to be
successful in problem solving by using a
plurality of solution strategies and
regulation processes of the system for
handling cognitive difficulties.
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2. THE ROLE OF REPRESENTATIONS
IN MATHEMATICS LEARNING:

EMPIRICAL BACKGROUND

Students experience a wide range of
representations from their early childhood
years onward. A main reason for this is that
most mathematics textbooks today make
use of a variety of representations more
extensively than ever before in order to
promote understanding. However, a
reasonable question can arise regarding
the actual role of the use of representations
in mathematics learning. A considerable
number of recent research studies in the
area of mathematics education in Cyprus
and Greece investigated this question from
different perspectives. In an attempt to
explore more systematically the nature and
the contribution of different modes of
representation (i.e., pictures, number line,
verbal and symbolic representations) on
mathematics learning, Gagatsis and Elia
(2005a) carried out a review of a number
of these studies, which examined the
effects of various representations on the
understanding of mathematical concepts
and mathematical problem solving in
primary and secondary education. Many
of these studies identified the difficulties
that arise in the conversion from one mode
of representation of a mathematical
concept to another. They also revealed
students’ inconsistencies when dealing
with relative tasks that differ in a certain
feature, i.e. mode of representation. This
incoherent behaviour was addressed as
one of the basic features of the
phenomenon of compartmentalization,
which may affect mathematics learning in
a negative way.

The research of Gagatsis, Shiakalli and
Panaoura (2003) examined the role of the
number line in second grade Cypriot

students’ performance in executing simple
addition and subtraction operations with
natural numbers. By employing implicative
statistical analysis (Gras, 1996), they
detected a complete compartmentalization
between the students’ ability to carry out
addition and subtraction tasks in the
symbolic form of representation and their
ability to perform the same tasks by using
the number line. A replication of the study
by Gagatsis, Kyriakides and Panaoura
(2004) with students of the same age in
Cyprus, Greece and Italy, and this time
using a different statistical method, namely
structural equation modelling, resulted in
congruent findings. This uncovers the
strength of the phenomenon of
compartmentalization despite differences
in curricula, teaching methods,
mathematics textbooks and even culture.

Michaelidou, Gagatsis and Pitta-Pantazi
(2004) have examined 12-year-old students’
understanding of the concept of decimal
numbers based on the threefold model of
the understanding of an idea, proposed by
Lesh et al. (1987). To carry out the study,
three tests on decimal numbers were
developed. These tests aimed at
investigating students’ abilities to recognize
and represent decimal numbers with a
variety of different representations and their
ability to transfer decimal numbers from the
symbolic form to the number line and vice
versa. The application of the implicative
statistical method demonstrated a
compartmentalization of students’ abilities in
the different tasks and this signifies that there
was a lack of coordination between
recognition, manipulation within a
representation and conversion among
different representations of decimal
numbers. This finding means that some
students who can recognize decimal
numbers in different representations
cannot use the representations to
represent the decimal numbers by
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themselves and, what is more important,
fail to transfer from one representation of
decimal numbers to another. In other
words, students have not developed a
unified cognitive structure concerning the
concept of decimals since their ideas
seemed to be partial and isolated. Given
the three aspects of the understanding of
mathematical concepts related to
representations, namely, recognition,
flexible use and conversion, it can be
suggested that in this study students did
not understand the concept of decimal
numbers.

Finally, Marcou and Gagatsis (2003)
examined 12-year-old students’
understanding of the concept of fractions
and more specifically the equivalence and
the addition of fractions. The researchers
designed three types of tests on fractions,
which involved conversions among the
symbolic expressions, verbal expressions
and the diagrammatic representations of
fractions (area of rectangles). Students’
responses to the tasks were
compartmentalized with respect to the
starting representation of the conversions,
as indicated by the implicative analysis of
the data. In line with the afore mentioned
studies’ results, this finding means that
students had a fragmentary understanding
of fractions.

In the present paper, four recent studies
are combined and discussed to explore
secondary school and university students’
abilit ies to use multiple modes of
representation for one of the most
important unifying ideas in mathematics
(Romberg, Carpenter, & Fennema, 1993;
Mousoulides & Gagatsis, 2004), namely
functions, and to flexibly move from one
representation of the concept to another.
The main concern of this paper is twofold;
first to identify and further clarify the
appearance of the phenomenon of

compartmentalization in students’ thinking
about the particular concept and second
to examine possible ways for succeeding
at de-compartmentalization in registers of
representations and problem solving
processes in functions.

3. REPRESENTATIONS AND THE
CONCEPT OF FUNCTION

The concept of function is central to
mathematics and its applications. It emerges
from the general inclination of humans to
connect two quantities, which is as ancient
as mathematics itself. The didactical
metaphor of this concept seems difficult,
since it involves three different aspects: the
epistemological dimension as expressed in
the historical texts; the mathematics teachers’
views and beliefs about function; and the
didactical dimension which concerns
students’ knowledge and the restrictions
imposed by the educational system
(Evangelidou, Spyrou, Elia, & Gagatsis,
2004). On this basis, it seems natural for
students of secondary or even tertiary
education, in any country, to have difficulties
in conceptualizing the notion of function. The
complexity of the didactical metaphor and the
understanding of the concept of function have
been a main concern of mathematics
educators and a major focus of attention for
the mathematics education research
community (Dubinsky & Harel, 1992;
Sierpinska, 1992). An additional factor that
influences the learning of functions is the
diversity of representations related to this
concept (Hitt, 1998). An important
educational objective in mathematics is for
pupils to identify and use efficiently various
forms of representation for the same
mathematical concept and to move flexibly
from one system of representation of the
concept to another. The influence of different
representations on the understanding and
interpretation of functions has been examined
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by a substantial number of research studies
(Hitt, 1998; Markovits, Eylon, & Bruckheimer,
1986).

Several researchers (Evangelidou et al.,
2004; Gagatsis, Elia & Mougi, 2002;
Gagatsis & Shiakalli 2004; Mousoulides &
Gagatsis, 2004; Sfard 1992; Sierpinska
1992) indicated the significant role of
different representations of function and the
conversion from one representation to
another on the understanding of the concept
itself. Thus, the standard representational
forms of the concept of function are not
enough for students to be able to construct
the whole meaning and grasp the whole
range of its applications. Mathematics
instructors, at the secondary level, have
traditionally focused their instruction on the
use of algebraic representations of
functions. Eisenberg and Dreyfus (1991)
pointed out that the way knowledge is
constructed in schools mostly favours the
analytic elaboration of the notion to the
detriment of approaching function from the
graphical point of view. Kaldrimidou and
Iconomou (1998) showed that teachers and
students pay much more attention to
algebraic symbols and problems than to
pictures and graphs. A reason for this is that,
in many cases, the iconic (visual)
representations cause cognitive difficulties
because the perceptual analysis and
synthesis of mathematical information
presented implicitly in a diagram often make
greater demands on a student than any
other aspect of a problem (Aspinwall, Shaw,
& Presmeg, 1997).

In addition, most of the aforementioned
studies have shown that students tend to
have difficulties in transferring information
gained in one context to another (Gagatsis
& Shiakalli, 2004). Sfard (1992) showed that
students were unable to bridge the algebraic
and graphical representations of functions,
while Markovits et al. (1986) observed that

the translation from graphical to algebraic
form was more difficult than the reverse.
Sierpinska (1992) maintains that students
have difficulties in making the connection
between different representations of
functions, in interpreting graphs and
manipulating symbols related to functions. A
possible reason for this kind of behaviour is
that most instructional practices limit the
representation of functions to the translation
of the algebraic form of a function to its
graphic form.

Lack of competence in coordinating multiple
representations of the same concept can be
seen as an indication of the existence of
compartmentalization, which may result in
inconsistencies and delays in mathematics
learning at school.  This particular
phenomenon reveals a cognitive difficulty
that arises from the need to accomplish
flexible and competent translation back and
forth between different modes of
mathematical representations (Duval, 2002).
Making use of a more general meaning of
compartmentalization which does not refer
necessarily to representations, Vinner and
Dreyfus (1989) suggested that
compartmentalization arises when an
individual has two divergent, potentially
contradictory schemes in her cognitive
structure and pointed out that inconsistent
behaviour is an indication of this
phenomenon.

The first objective of this study is to identify
the phenomenon of compartmentalization in
secondary school students and university
students’ strategies for dealing with various
tasks using functions on the basis of the
findings of four recent research studies (Elia,
Gagatsis & Gras, 2005; Gagatsis & Elia,
2005b; Mousoulides & Gagatsis, 2006;
Mousoulides & Gagatsis, 2004). Although
these studies explored the students’ ability
to handle different modes of the
representation of function and move flexibly
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from one representation to another, there is
a fundamental difference between the
mathematical activities they proposed. The
study of Elia et al., (2005) investigated
students’ understanding of function based
on their performance in mathematical
activities that integrated both types of the
transformation of representations proposed
by Duval (2002), i.e. treatment and
conversion. The study of Mousoulides and
Gagatsis (2004) investigated students’
performance in mathematical activities that
principally involved the second type of
transformations, that is, the conversion
between systems of representation of the
same function, and concentrated on
students’ approaches to the use of
representations of functions and the
connection with students’ problem solving
processes. The studies of Gagatsis et al.,
(2004) and Mousoulides and Gagatsis
(2006) introduced two approaches that
might succeed at de-compartmentalization,
namely a differentiated instruction and the
use of a computerized environment for
solving problems in functions. Thus, what is
new in this review is that students’
understanding of function is explored from
two distinct perspectives (which will be
further clarified in the next section), but
nevertheless based on the same rationale,
that is, Duval’s semiotic theory of
representations. The second objective of the
review is to discuss strategies for
overcoming compartmentalization in
functions.

4. CAN WE “TRACE” THE
PHENOMENON OF

COMPARTMENTALIZATION BY USING
THE IMPLICATIVE STATISTICAL

METHOD OF ANALYSIS?

Previous empirical studies have not
clarified compartmentalization in a
comprehensive or systematic way. Thus,

we theorize that the implicative relations
between students’ responses in the
administered tasks, uncovered by Gras’s
implicative statistical method (Gras, 1996),
as well as their connections (Lerman, 1981)
can be beneficial for identifying the
appearance of compartmentalization in
students’ behaviour. To analyze the collected
data of both studies, a computer software
called C.H.I.C. (Classification Hiérarchique
Implicative et Cohésitive) (Bodin, Coutourier,
& Gras, 2000) was used.

We assume that the phenomenon of
compartmentalization in the understanding
of function as indicated by students’
performance in tasks integrating treatment
and conversion (Gagatsis & Elia, 2005b)
appears when at least one of the following
conditions emerges: first, when students
deal inconsistently or incoherently with tasks
involving the different types of representation
(i.e., graphic, symbolic, verbal) of functions
or conversions from one mode of
representation to another; and/or second,
when success in using one mode of
representation or one type of conversion of
function does not entail success in using
another mode of representation or in another
type of conversion of the same concept. As
regards students’ ways of approaching tasks
requiring only conversions among
representations of the same function
(Mousoulides & Gagatsis, 2004), our
conjecture is that compartmentalization
appears when students deal with all of the
tasks using the same approach, even
though a different approach is more suitable
for some of them.

4.1. Secondary school students’
abilities in the transformation of

representations of function (Study 1)

Recent studies (Gagatsis & Elia, 2005b;
Elia et al., 2005) investigated secondary
school students’ ability to transfer



Relime

students were asked to translate each
relation from its verbal representation to its
graphical and symbolic mode. For each
type  of  translation , the  following   types
of  algebraic   relations   were   examined:

based on a relevant study by Duval (1993).

The former three tasks corresponded to
regions of points, while the latter three tasks
corresponded to functions. Each test
included an example of an algebraic relation
in graphic, verbal and symbolic forms to
facilitate students’ understanding of what
they were asked to do, as follows:
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mathematical relations from one
representation to another. In particular, the
sample of the study consisted of 183 ninth
grade students (14 years of age). Two tests,
namely A and B, were developed and
administered to the participants. The tasks
of both tests involved conversions of the
same algebraic relations, but with different
starting modes of representation. Test A
consisted of six tasks in which students were
given the graphic representation of an
algebraic relation and were asked to translate
it to its verbal and symbolic forms respectively.
Test B consisted of six tasks (involving the
same algebraic relations as test A) in which

y < 0, xy> 0, y > x, y = −x, y = 3 / 2, y = x − 2

Table 1: An example of the tasks included in the test

 

 

 

Graphic representation      Verbal representation      Symbolic representation

y

y’

x’   x

It represents the region
of the points having
positive abscissa.

x>0

It is apparent that the tasks involved conversions, which were employed either as complex
coding activities or as point-to-point translations and were designed to correspond to
school mathematics. However, a general use of the processes of treatment and conversion
was required for the solution of these tasks. For instance, the conversion of the function
          from the algebraic expression to the graphical one could be accomplished by
carrying out various kinds of treatment, such as calculations in the same notation system.
It is evident that in this kind of task the process of treatment cannot be easily distinguished
from the process of conversion.  According to this perspective, these tasks differ from the
tasks proposed by Duval (1993).

The results of the study revealed that students achieved better outcomes in the
conversions starting with verbal representations relative to the conversions of the

y = x− 2
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corresponding relations starting with
graphic representations. In addition, all of
the conversions from the graphic form of
representation to the symbolic form of
representation appeared to be more
difficult than the conversions of the
corresponding relations from the graphic
form of representation to the verbal form
of representation. Students perceived the
latter type of conversion more easily at a
level of meta-mathematical expression
rather than at a level of mathematical
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Responses in Test B  Responses in Test A  

expression. In fact, students were asked
to describe verbally (in a text) a property
perceived by the graph. On the contrary,
the conversions from the graphical form to
the symbolic form entailed mastering
algebraic concepts concerning equality or
order relations as well as using the
algebraic symbolism efficiently.

Figure 1 presents the similarity diagram of
the tasks of Test A and Test B based on
the responses of the students.

Figure 1:  Similarity diagram of the tasks of Test A and Test B according to Grade 9 students’
responses

Note: The symbolism used for the variables of this diagram (and the diagram that follows)
is explained below.

1. “a” stands for Test A, and “b” stands for Test B

2. The first number after “v” stands for the number of the task in the test
    i.e.,

3. The second number stands for the type of conversion in each test, i.e., for Test A, 1:
graphic to verbal representation, 2: graphic to symbolic representation; for Test B, 1:
verbal to graphic representation, 2: verbal to symbolic representation.

1: y < 0, 2:xy > 0, 3:y > x, 4:y = −x, 5:y = 3 / 2, 6:y = x − 2
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The similarity diagram allows for the
grouping of students’ responses to the
tasks based on their homogeneity. Two
distinct similarity groups of tasks are
identified. The first group involves similarity
relations among the tasks of Test A, while
the second group involves similarity
relations among the tasks of Test B. This
finding reveals that different types of
conversions among representations of the
same mathematical content were
approached in a completely distinct way.
The starting representation of a
conversion, i.e., graphic or verbal
representation, seems to have influenced
the students’ performance, even though
the tasks involved the same algebraic
relations. Thus, we observe a complete
separation of students’ responses to the
two tests even in tasks that were similar
and rather “easy” for this grade of students.
The similarity relations within the group of
variables of the tests are also of great
interest since they provide some
indications of the students’ way of
understanding the particular algebraic
relations and further support the likelihood
that the phenomenon of
compartmentalization was present.

For example, the similarity group of Test B
is comprised of three subgroups. The first
subgroup contains students’ responses to
the tasks v11b and v12b (y<0) and the
tasks v21b and v22b (xy>0),  that is, the
two conversions from verbal to graphic
representation and from verbal to symbolic
representation of the first two tasks of Test
B. These two tasks involve relations that
represent “regions of points” and they are
the easiest tasks of the test. The second
subgroup is formed by the variables v31b
(y>x), v41b(y=-x), v51b (y=3/2) and v61b

( y = x-2) that is the conversion from verbal
to graphic representation of four relations
of “functional character,” as the relation of
task 3 corresponds to a region of points
related to the function y=x, while the
relations of tasks 4, 5 and 6 are functions.
The third subgroup is comprised by the
variables v42b (y=-x), v52b (y=3/2) and
v62b (y=x-2), that is, the conversion from
verbal to algebraic representation of the
tasks that involve functions.

To sum up, the formation of the first subgroup
separately from the other two is of a
“conceptual nature,” since it is due to the
conceptual characteristics of the relations
involved, whereas, the distinction between
the third subgroup and the forth subgroup is
of a “representational character,” since it is a
consequence of the target of the conversion.
To summarize, one can observe two kinds of
compartmentalization in the similarity
diagram: one “first order”
compartmentalization (between the tasks of
the two tests) and one “second order”
compartmentalization (between the tasks of
the same test).

The implicative diagram in Figure 2 was
derived from the implicative analysis of the
data and contains implicative relations,
indicating whether success at a specific
task implies success at another task related
to the former one. The implicative relations
are in line with the connections in the
similarity diagram and the above remarks.
In particular, one can observe the formation
of two groups of implicative relations. The
first group involves implicative relations
among the responses to the tasks of Test
B and the second group involves implicative
relations among the responses to the tasks
of Test A.
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The fact that implicative relations appear
only between students’ responses to the
tasks of the same test indicates that
success at one type of conversion of an
algebraic relation did not necessarily imply
success at another type of conversion of
the same relation. For example, students
who accomplished the conversion from a
graphical representation of a mathematical
relation to its verbal representation were
not automatically in a position to translate
the same relation from its verbal
representation to its graphical form
successfully. This is the first order
compartmentalization that appears
between students’ responses to the tasks
of the two tests. Additionally, evidence is
provided for the appearance of the second
order compartmentalization, that is,
between students’ responses to the tasks
of the same test. The implicative chain
“v61a-v31a-v41a” of Test A and the
implicative chain “v61b-v51b-v11b” of Test

Figure 2:  Implicative  diagram of 14-year-old students’ responses to the tasks of Test A and
Test B

B can be taken as examples of the second
order compartmentalization, probably due
to the same “target” representations of the
conversions.

Other useful information can also be
obtained by this implicative diagram. For
example the simplest tasks in both tests
are the tasks which involve the relation y<0
(v11), corresponding to a region of points.
The students’ failure in the tasks involving
the particular relation (v11a or v11b) also
implies failure at most of the other tasks in
both tests. This inference is tenable as the
implicative diagram was constructed by
using the concept of “entropy.” This means
that for every implication where “a implies
b” the counter-inverse “no a implies no b”
is also valid.

Overall, based on the relations included in
the similarity and the implicative diagrams
for secondary school students, it can be

                            Responses in Test B                          Responses in Test A



Relime208

inferred that there was a
compartmentalization between students’
responses to the tasks of the first test and
the tasks of the second test, which involved
conversions of the same algebraic relations
but different starting modes of
representation (i.e., graphic and verbal
respectively). Students’ higher success
rates at the tasks of Test B, i.e., conversions
starting with graphic representations,
relative to the tasks of Test A, i.e.,
conversions starting with verbal
representations,  provide further evidence
for their inconsistent behaviour in the two
types conversions. Another kind of
compartmentalization was also uncovered
within the same test, indicating students’
distinct ways of carrying out conversion
tasks with reference to their conceptual
(kind of mathematical relation) or
representational (target of the conversion)
discrepancies.

4.2. Student teachers’ approaches to
the conversion of functions from the

algebraic to the graphical
representation (Study 2)

In this section, we present some elements
from a study of Mousoulides and Gagatsis
(2004) that used a different approach to
explore the idea of the conversion between
representations and the phenomenon of
compartmentalization.  The researchers
investigated student teachers’ approaches
to solving tasks of functions and the
connection of these approaches with
complex geometric problem solving. The
theoretical perspective used in their study
is related to a dimension of the framework
developed by Moschkovich, Schoenfeld
and Arcavi (1993). According to this
dimension, there are two fundamentally
different perspectives from which a function
is viewed, i.e., the process perspective and
the object perspective. From the process
perspective, a function is perceived of as

linking x and y values: For each value of x,
the function has a corresponding y value.
Students who view functions under this
perspective can substitute a value for x into
an equation and calculate the resulting
value for y or find pairs of values for x and
y to draw a graph.  In contrast, from the
object perspective, a function or relation
and any of its representations are thought
of as entities - for example, algebraically
as members of parameterized classes, or
in the plane, as graphs that are thought of
as being “picked up whole” and rotated or
translated (Moschkovich et al., 1993).
Students who view functions under this
perspective can recognize that equations
of lines of the form y = 3x + b are parallel or
can draw these lines without calculations
if they have already drawn one line or they
can fill a table of values for two functions
(e.g., f(x) = 2x, g(x) = 2x + 2) using the
relationship       between         them        (e.g.
g(x) = f(x) + 2) (Knuth, 2000).

Mousoulides and Gagatsis (2004) have
adopted the terms “algebraic approach”
and “geometric approach” in order to
emphasize the use of the algebraic
expression or the graphical representations
by the students in the conversion tasks and
in problem solving. The algebraic approach
is relatively more effective in making salient
the nature of the function as a process,
while the geometric approach is relatively
more effective in making salient the nature
of function as an object (Yerushalmy &
Schwartz, 1993).

Data were obtained from 95 sophomore
pre-service teachers enrolled in a basic
algebra course at the University of Cyprus.
A questionnaire, which consisted of four
tasks and two problems, was administered
at the beginning of the course. Each task
involved two linear or quadratic functions.
Both functions were in algebraic form and
one of them was also in graphical
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representation. Functions in each task were related in a way such as f(x), g(x)=f (x) + c, or
h(x)= -f(x), etc. The four particular tasks were as follows:

1. y=2x and y= -2x (T1)
2. y= x2 and y= x2+3 (T2)
3. y=x2 +3x-2 and y= x2 - 3x - 2(T3)
4. y=x2 +x and y=x2+2x +1(T4)

Students were asked to sketch the graph of the second function. An example of the form
in which the four tasks were proposed is as follows:

The following diagram presents a graph of the function y=x2 +x. Sketch the graph of the
function y=x2+2x +1.

It is obvious that obtaining the correct
solution of the tasks did not necessarily
require carrying out a treatment in the same
system of representation. What was
required was the conversion of the
algebraic representation of a function to the
graphical one, on the basis of its relation
with the corresponding representations of
a given function.

Additionally, students were asked to solve
two problems. One of the problems

Figure 3:  The graph of the function y=x2+x (Task 4)

consisted of textual information about a
tank containing an initial amount of petrol
and a tank car filling the tank with petrol.
Students were asked to use the information
to draw the graphs of the two linear
functions, i.e. the graph of the amount of
petrol in the tank with respect to time and
the graph of the amount of petrol in the tank
car with respect to time and to find the time
at which the amounts of petrol in the tank
and in the car would be equal. The other
problem involved a function in a general
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form f(x) = ax2+bx +c. Numbers a, b and c
were real numbers and the f(x) was equal
to 4 when x=2 and f(x) was equal to -6 when
x=7. Students were asked to find how many
real solutions the equation ax2+bx +c had
and explain their answer.

In light of the above, this study differs from
the previous one in the following two basic
characteristics:

• First the proposed conversions can be
carried out geometrically by paying
attention to the graphical representation
of a given function in order to construct
the representation of a second function
or algebraically.

•  Second,    the      study       attempts      to
investigate how students’ approaches to
the conversions between different
registers of functions are associated with
their processes in problem solving on
functions.

The results of this study indicated that the
majority of students responded correctly in
the first two tasks (T1: 73.2% and T2: 80%).
Their rate of success was radically reduced
in tasks involving quadratic functions
involving complex transformations (T3:
41.1% and T4: 45.3%) and especially in
solving complex geometric problems.  More
specifically, only 27.4% and 11.6% of the
95 participants provided appropriate
solutions.

As regards students’ approaches, more
than 60% of the students that provided a
correct solution followed a process
perspective or the algebraic approach,
which involved the construction of the
function graph by finding pairs of values x
and y. The other students used an object
perspective or the geometric approach by
observing and using the relation between
the two functions. It is noteworthy that

students who chose the algebraic approach
applied it even in situations in which a
geometric approach seemed easier and
more efficient than the algebraic.
Furthermore, in the second problem, most
of the students (88.4%) failed to recognize
or suggest a graphical solution as an option
at all, even though the problem could not
be solved algebraically.

For the similarity diagram and the
implicative analysis of the data, students’
answers to the tasks were codified as
follow: (a) «A» was used to represent
“algebraic approach – function as a
process” to tasks and problems; (b) «G»
stands for students who adopted a
“geometric approach – function as an
entity.” The similarity diagram of students’
responses to the tasks in Figure 4 involved
two distinct clusters with reference to
students’ approaches. The first cluster
represents the use of the algebraic
approach (process perspective), while the
second cluster refers to the use of the
geometric approach (object perspective)
and solving geometric problems. It is thus
demonstrated that students who used the
geometric approach in one task were likely
to employ the same approach in all the
other tasks. Similarly, students who used
the algebraic approach employed it
consistently in the tasks of the test. It can
also be observed that the second cluster
includes the variables corresponding to the
solution of the complex geometric problems
along with the variables representing the
geometric approach. This means that
students who effectively used the geometric
approach for simple tasks on functions also
succeeded in solving complex geometric
problems on function. In line with the
similarity diagram, success rates indicated
that students who were able to use a
geometric approach achieved better
outcomes in solving complex function
problems, probably because they were able
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to observe and use the connections and
the relations in the problems flexibly. The
formation of the two clusters reveals that
students tended to solve tasks and
problems in functions using the same

approach, even in tasks where a different
approach was more suitable, providing
support for the emergence of the
phenomenon of compartmentalization in
students’ processes.
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Figure 4:  Similarity diagram of student teachers’ approaches to the tasks

Note: The symbolization of the variables that were used to represent students’ responses
to the tasks are presented below.

1. Symbols “T1A”, “T2A”, “T3A” and “T4A” represent a correct algebraic approach to the
tasks and “P1A” to the first problem (second problem could not be solved algebraically)

2. Symbols “T1G”, “T2G”, “T3G” and “T4G” represent a correct geometric approach to
the tasks and “P1G” and “P2G”, correct graphical solutions to the two problems

The hierarchical tree in Figure 5 involves the implicative relationships between the
variables. Three groups of implicative relationships can be identified. The first group and
the third group of implicative relationships include variables concerning the use of the
geometric approach – object perspective and variables concerning the solution of the
geometric problems. The second group involves links among variables standing for the
use of the algebraic solution-process perspective. These relations are in line with the
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findings derived from the similarity diagram.
The establishment of these groups of links
provides support once again for the
consistency that characterizes students’
provided solutions towards the function
tasks and problems. Furthermore, the
implicative relationships of the third group
indicate that students who solved the
second problem by applying the correct
graphical solution have followed the object

perspective – graphical representation for
the other problem and the other two simple
tasks. A possible explanation is that
students who have a solid and coherent
understanding of functions can recognize
relations in complex geometric problems
and thus can flexibly connect pairs of
equations with their graphs and then easily
apply the geometric approach in solving
simple tasks on functions.

Figure 5: Hierarchical tree illustrating implicative relations among student teachers’ approaches
to the tasks

Note: The implicative relationships in bold colour are significant at a level of 99%

1st group         2nd group       3rd group
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5. CAN WE SUCCEED AT DE-
COMPARTMENTALIZATION?

Since an important aspect of this paper is
to examine whether the registers of
representations and the problem solving
cognitive processes in functions are
compartmentalized in students’ thinking,
we will present data from two current
investigations. These studies (study 3 and
study 4) are related to the previously
presented studies, with their objective
being to replicate previous results and
support further findings for accomplishing
de-compartmentalization in functions.

5.1. First effort to succeed at de-
compartmentalization (Study 3)

In an attempt to accomplish de-
compartmentalization, an experimental
study was designed by Gagatsis, Spyrou,
Evangelidou and Elia (2004). The
researchers developed two experimental
programs for teaching functions to
university students based on two different
perspectives, which are presented below.
Two similar tests were administered pre-
and post- the intervention in order to
investigate students’ understanding of
functions and to compare the effectiveness
of each experimental design.

One hundred fifty-seven university
students participated in this study. The
participants were second year students of
the Department of Education (prospective
teachers) who attended the course
“Contemporary Mathematics” at the
University of Cyprus. The students were
randomly assigned to two groups which
were taught by two different professors.
Experimental Group 2  was comprised of
68 students and Experimental Group 2 was
comprised of 81 students. The students in
both groups differed in the level and length

of the mathematics courses that they had
attended in school. Nevertheless, all of the
students who participated in this study had
received a similar curriculum on functions
during the last three grades of high school.

The study was carried out in three stages.
In the first stage, a pre-test was
administered to both groups of students in
order to investigate their initial
understanding of the construct of function
before the instruction.  In the second stage,
the two groups received instructional
sessions spread over a period of the same
duration for both groups. To compare the
two groups, in the third stage, a post-test
similar to the pre-test was used to assess
students’ understanding of functions.

The two experimental programs, conducted
by two different university professors
(Professors A and B), approached the
teaching of the notion of function from two
different perspectives.

Experimental Program 1 started by
providing a revision of some of the functions
that were already known to the students
from school mathematics, physics and
economics. Professor A reminded students
about the difference between an equation
and a function, which typically appear in a
similar symbolic form.  Different types of
functions were presented next, starting from
the simple ones and proceeding to the more
complicated ones. At first, the program
introduced different kinds of linear functions
and described the various representations
of functions in the form: y=ax+b. Functions
with a disconnected domain were also
presented. Discrete functions described by
discrete types of range and the
characteristic function of a set were also
presented. Arrow diagrams were also
introduced in order to demonstrate to the
students a way to examine the ideas of one-
to-one and many-to-one types of
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correspondence as a condition for the
definition to be held. Next, the quadratic
polynomial function of the form ax2+bx+c
was taught. Special attention was given to
the main features of the graph of the
polynomial function (e.g., maximum and
minimum points, possible roots, symmetry
axis, possible qualitative manipulation of
functions in the form ax2). Various special
cases and the general form of the rational

function were also examined.y =
c
x

Trigonometric functions and their
composition were studied next. The basic
features and properties of the exponential
functions were also discussed as well as
the ill-defined functions of Weierstrass or
Dirichlet without any reference to the
geometrical representation. Reference was
made to the inverse functions and to which
functions can be inversed. The program
ended by giving the set-theoretical
definition of a function. The definition was
then applied in order to identify whether
each of the aforementioned types of
relations as well as others, such as the
formula of the circle, were functions or not.

Experimental Program 2 encouraged the
interplay between the different modes of the
representation of function in a systematic
way. The instruction that was developed by
Professor B on functions was based on two
dimensions. The first dimension involved
the intuitive approach and the definition of
function. The second dimension
emphasized the different representations of
function. The instruction began with issues
that are related to sets, the elements of a
set and the operations of sets. The
coordinate pairs and the Cartesian product
were also discussed. The concept of
correspondence was introduced, and
equivalence and arrangement relations
were defined. Then the activities for the
study of the concept of function were based
on the different relations between two sets,

namely A and B, and examples of arrow
diagrams, coordinate pairs and graphs
were presented.

The second dimension of the instruction
concerned representations. It included the
following elements: theoretical models and
interesting empirical studies on the
connection of representations with
mathematics learning, theories on the use
of semiotic representations in the teaching
of mathematics and the pedagogical
implications as well as the concept of
function. Then the solution of tasks in
graphical and algebraic representations
and examples of conversion of functions
from one representation to another were
presented.

In the light of the above, an essential
epistemological difference can be identified
between the two experimental programs.
Experimental Program 1 involved
instruction of a classic nature, widely used
at the university level.  In contrast,
Experimental Program 2 was based on a
continuous interplay between different
representations of various functions.

The pre- and the post-tests involved
conversion tasks that were similar to the
tasks of the test used in the study 1
described above (Gagatsis & Elia, 2005b).
In addition, another two questions asked
what a function is and requested two
examples of functions from their application
in real life situations. The tests also included
tasks asking students to identify, by
applying the definition of the concept,
whether mathematical relations in different
modes of representation (verbal
expressions, graphs, arrow diagrams and
algebraic expressions) were presenting
functions.

Comparing the success percentages of the
students before and after instruction
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indicated great improvement with regards
to the definition of function. In particular,
while only 19% of the students gave an
approximately correct definition (i.e. (i)
accurate set-theoretical definition, (ii)
correct reference to the relation between
variables but without the definition of the
domain and range, (iii) definition of a special
kind of function, e.g. real, bijective, injective
or continuous function) before the
instruction, 69% of the students gave the
corresponding definition after instruction.
Students’ success rates after instruction
were also radically improved in most of the
recognition and conversion tasks of the
tests. For instance, the graph of the straight
line y=4/3 was recognized as a function only
by 26% of the students before instruction,
while the graph of the line y=-3 was
identified as a function by 82% of the
students after instruction.

Analysis of the data gave four similarity
diagrams. Two of the similarity diagrams
involved the answers of the two
experimental groups of students separately
to the tasks of the test before instruction.
The other two similarity diagrams included
the answers of the two experimental groups
of students separately, after instruction.
Within the former two similarity diagrams
distinct groups or subgroups of variables
of students’ responses in recognition tasks
involving the same mode of representation
of functions, i.e., in verbal form, in graphical
form, in an algebraic form, in an arrow
diagram, were formed separately. The
particular finding revealed the consistency
with which students dealt with tasks in the
same representational format, but with
different mathematical relations. However,
lack of direct connections between
variables of similar content, but different
representational format, indicated that
students were able to identify a function in
a particular mode of representation (e.g.,
algebraic form), but not necessarily in

another mode of representation (e.g.,
graphical). This inconsistent behaviour
among different modes of representation was
an indication of the existence of
compartmentalization. This phenomenon
also appeared in the similarity diagram
referring to the students of Experimental
Group 1, especially in the cases of the
graphical representations and arrow
diagrams. The compartmentalization was
limited to a great extent, though, in the
similarity diagram involving the responses of
students of Experimental Group 2. Similarity
connections were formed between students’
performance in recognizing functions in
different forms of representation, indicating
that students dealt similarly with tasks
irrespective of their mode of representation.
In other words, success was independent
from the mode of representation of the
mathematical relation. This finding revealed
that Experimental Program 2 was successful
in developing students’ abilities to flexibly use
various modes of representations of functions
and thus accomplished the breach of
compartmentalization, i.e. de-
compartmentalization, in their behaviour.  The
research in this direction, described briefly
above, is still in progress.

5.2. Second effort to succeed at de-
compartmentalization (Study 4)

Mousoulides and Gagatsis (2006) conducted
a study exploring the effectiveness of
computer based activities in de-
compartmentalized registers of
representations and problem solving
processes in functions. A considerable
number of research studies have examined
the effects of technology usage on many
aspects of students’ mathematical
achievement and attitudes, their
understanding of mathematical concepts,
and the instructional approaches in teaching
mathematics. Despite this, only a limited
number of researchers focused on the effects
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of using appropriately different modes of
representations and making the necessary
connections between them by using
technological tools (Mousoulides & Gagatsis,
2006). The investigation presented here
follows the investigation presented in Section
4.2. Researchers in the aforementioned study
examined whether students’ work with the aid
of a mathematical software package could
assist students in adopting and implementing
effectively the “geometric approach” to solving
problems in functions and therefore promote
the de-compartmentalization of registers of
representations in students’ thinking.

The participants were ninety sophomore
students in the Department of Education.
Students were attending an undergraduate
course on introductory calculus. Of these,
18% were males and 82% were females. The
study was conducted in three phases. In the
first phase, a questionnaire similar to the one
that was developed in the second study,
reported here, was administered at the
beginning of the course. The second phase
of the study was conducted over the course
of the subsequent two weeks. During this
period, forty of the 90 students were randomly
selected to participate in four two-hour

sessions. During these sessions students,
working individually or in pairs, were asked
to solve problems in functions using
Autograph and to present and discuss their
results in discussions with the whole class.
Autograph (www.autograph-math.com), a
visually compelling mathematical software,
was used for the purposes of the study.
Autograph and other similar software
packages have various features which can
facilitate a constructive approach to learning
mathematics (Mousoulides, Philippou &
Hoyles, 2005). Autograph allows the user to
“grab and move” graphs, lines and points on
the screen whilst observing changes in
parameters, and vice versa. Additionally, with
its multiple representation capabilities, it
allows the user to switch easily between
numeric, symbolic and visual representations
of information. A sample problem that was
discussed during the second phase is
presented below:

The  following  is the graph of the function
f(x) = ax2+bx+c. Suggest possible values for
a,b,c and explain your answers. Pose a
related problem for the other students of your
class that could be solved using your
worksheet in Autograph.

 

Figure 6:  The graph of the function f (x) = ax2+bx+c presented in one problem
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A second test, involving a second set of four
tasks and two problems in functions was
administered ten days after the completion
of the second phase. All items in the second
test were similar to the ones of the first test
administered in the first phase.

Similar to the study presented in Section
4.2, researchers proposed that conversions
could be carried out geometrically by
focusing their attention and efforts on the
relation of the symbolic representations of
the two functions in order to construct the
second graph or, algebraically, by selecting
pairs of points to construct the new graph
by “ignoring” its relation to the other one.
Additionally, the study attempted to
investigate how students’ approaches in the
conversions between different registers of
functions were associated with their
processes in problem solving. The main
focus of Mousoulides and Gagatsis (2006)
investigation was to examine whether
student work on problems on functions with
the aid of the appropriate mathematical
software could result in the de-
compartmentalization of the different
registers of representations and their use
in problem solving in functions.

The results of the study duplicate earlier
findings (Mousoulides & Gagatsis, 2004),
indicating that most of the students can
correctly answer tasks on graphing linear
(with success percentages being higher
than 80%) and quadratic functions (with
success percentages being higher than
65%). At the same time, their successful
performance in solving related problems
was limited to less than 25%. An important
finding related to students’ approaches
showed that, in all tasks, more students
preferred using the algebraic than the
geometric approach. It is noteworthy that
students who chose the algebraic approach
applied it even in situations in which a
geometric approach seemed easier and

more efficient than the algebraic. Of interest
is the second problem, for which the great
majority of students failed to recognize or
suggest a graphical solution as an option
at all, even though the problem could not
be solved algebraically.

Analysis of the data from the second test
showed that both groups of students
improved their percentages in solving both
simple tasks and problems in functions. Of
interest, is the finding that students who
participated in the intervention phase (Group
1) outperformed their counterparts (Group 2)
in all tasks and problems. In detail, Group 1
students’ percentages were higher than those
of Group 2 students with percentage
differences varying from 4 % to 12 % in
solving tasks and from 10% to 12% in
problems. Furthermore, Group 1 students
significantly improved their selection of
geometric approach in solving tasks and
problems in functions, indicating that the
exploration and discovery of open ended
problems in the environment of mathematical
software like Autograph might have an
influence on students’ selection and use of
the geometric approach in functions.

The findings from the two similarity diagrams
were also quite impressive. One of the
similarity diagrams involved Group 2 student
responses, while the second one presented
the results from Group 1 students.  The
similarity diagram for Group 2 students
involved two distinct clusters with reference
to students’ approach.  In keeping with
previous findings, students who used the
algebraic approach employed it consistently
in the tasks and problems of the test, even in
cases where the use of the geometric
approach was more suitable.  The similarity
diagram for Group 1 students showed that
their responses again formed two clusters,
but these clusters were not
compartmentalized into algebraic and
geometric approaches. Indeed, one of the
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clusters showed that students were flexible
in selecting the most appropriate approach
for solving tasks on functions. Additionally,
students were eager to switch their approach
in solving a problem, especially in a problem
which could not be solved using an algebraic
approach. This was not the case for students
in Group 2.

6. DISCUSSION

6.1. Identifying the phenomenon of
compartmentalization and seeking

ways to breach it

A main concern of the present paper was to
investigate students’ understanding of the
concept of function via two perspectives. The
first point of view concentrates on students’
ability to handle different modes of the
representation of function in tasks involving
treatment and conversion and the second
perspective refers to students’ approaches
in conversion tasks and complex function
problems. Furthermore, this paper entailed
some considerations with regards to the
difficulties confronted by the students when
dealing with different modes of mathematical
representations and more specifically the
phenomenon of compartmentalization.
Another aim of this paper was to present two
on-going investigations which attempted to
design and implement different intervention
programs having a common objective, i.e. to
help students develop flexibility in working
with various representations of function and
thus accomplish de-compartmentalization of
the different registers of representations in
students’ thinking.

The first study reported in this paper
examined student performance in the
conversions of algebraic relations (including
functions) from one mode of representation
to another. It was revealed that success in
one type of conversion of an algebraic relation

did not necessarily imply success in another
type of conversion of the same relation. Lack
of implications or connections among different
types of conversion (i.e., with different starting
representations or even with different target
representations) of the same mathematical
content indicated the difficulty in handling two
or more representations in mathematical
tasks. This incompetence provided a strong
case for the existence of the phenomenon of
compartmentalization among different
registers of representation in students’
thinking, even in tasks involving the same
relations or functions. The differences among
students’ scores in the various conversions
from one representation to another, referring
to the same algebraic relation or function
provided support for the different cognitive
demands and distinctive characteristics of
different modes of representation. This
inconsistent behaviour was also seen as an
indication of students’ conception that
different representations of the same concept
are completely distinct and autonomous
mathematical objects and not just different
ways of expressing the meaning of a
particular notion. Inconsistencies were also
observed in students’ responses with
reference to the different conceptual features
of the mathematical relations involved in the
conversions, i.e. functions or not.

The most important finding of the second
study was that two distinct groups were
formatted with consistency, that is the
algebraic and the geometric approach
groups. The majority of student work with
functions was restricted to the domain of the
algebraic approach. This method, which is a
point to point approach giving a local image
of the concept of function, was followed with
consistency in all of the tasks carried out by
the students. Many students have not
mastered even the fundamentals of the
geometric approach in the domain of
functions. Most of the students’
understanding was limited to the use of
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algebraic representations and the algebraic
approach, while the use of graphical
representations was fundamental in solving
geometric problems.  Only a few students
used an object perspective and approached
the function holistically, as an entity, by
observing and using the association of it with
the closely related function that was given.
Only these students developed the ability to
employ and select graphical representations,
thus the geometric approach. The second
study’s findings are in line with the results of
previous studies indicating that students
cannot use the geometric approach
effectively (Knuth, 2000). The fact that most
of the students chose an algebraic approach
(process perspective) and also demonstrated
consistency in their selection of this approach,
even in tasks and problems in which the
geometric approach (object perspective)
seemed more efficient, or the fact that they
failed to suggest a graphical approach at all,
is a strong indication of the phenomenon of
compartmentalization in the students’
processes in tasks and problems on functions
involving graphical and algebraic
representations.

Moreover, an important finding of the second
study involved the relation between the
graphical approach and geometric problem
solving. This finding is consistent with the
results of previous studies (Knuth, 2000;
Moschkovich et al., 1993), indicating that the
geometric approach enables students to
manipulate functions as an entity, and thus
students are capable of finding the
connections and relations between the
different representations involved in
problems. The data presented in the second
study suggested that students who had a
coherent understanding of the concept of
functions (geometric approach) could easily
understand the relationship between
symbolic and graphic representations in
problems and thus were able to provide
successful solutions.

In both studies presented above, the results
of the statistical analysis of C.H.I.C.
provided a strong case for the existence of
the phenomenon of compartmentalization
in students’ ways of dealing with different
tasks on functions. However, the findings
of each of the two studies were substantial
and gave different information regarding the
acquisition and mastery of the concept of
function. Lack of implications and similarity
connections among different types of
conversion of the same mathematical
content in Study 1 indicated that students
were not in a position to change systems
of representation of the same mathematical
content of functions in a coherent way. Lack
of implicative and similarity connections
between the geometric approach and the
algebraic perspective in students’
responses in Study 2 provided support for
students’ deficiency in flexibly employing
and selecting the appropriate approach, in
this case the geometric one, to sketch a
graph or to solve a problem on functions. It
can       be     asserted      that     registers
of representations remained
compartmentalized in students’ minds and
mathematical thinking was fragmentary and
limited to the use of particular
representations or a particular approach in
both types of transformation, that is,
treatment and conversion.

Compartmentalization, as indicated by
Duval (1993; 2002) and explained
empirically in the present paper, is a general
phenomenon that appears not only in the
learning of functions, but also in the learning
of many different concepts, as pointed out
at the beginning of this paper. All these
findings indicate students’ deficits in the
coordination of different representations
related to various mathematical concepts.
Duval (1993; 2002) maintains that the de-
compartmentalization of representations is
a crucial point for the understanding of
mathematical concepts.



Relime220

Identifying the phenomenon of
compartmentalization among the registers of
representation in students’ thinking on
functions indicated that current instructional
methods fail to help students develop a deep
conceptual understanding of the particular
construct. On the basis of the above findings,
two current experimental efforts have been
designed and carried out for the teaching of
functions in order to accomplish de-
compartmentalization. The former research
effort (Study 3) involved two experimental
programs. Experimental Program 1 involved
instruction of a classic nature and one widely
used at the university level. On the contrary,
Experimental Program 2 was based on a
continuous interplay between different
representations of various functions. The
other study (Study 4) involved an
experimental program that promoted the
exploration and discovery of open ended
problems in the environment of a
mathematical software program that provided
multiple representation capabilities and
allowed the students to switch easily between
numeric, symbolic and visual representations
of information. Students that participated in
Experimental Program 1 of Study 3 did not
show a significant improvement in the
conversion tasks and continued to treat the
various representations of function as distinct
entities, thus demonstrating a
compartmentalized way of working and
thinking. As regards Experimental Program
2 of Study 3 and the experimental program
of Study 4, despite their distinctive features
they were both successful in stimulating a
positive change in students’ responses and
in attaining the de-compartmentalization of
representations in their performance. More
specifically, the former experimental
program succeeded in developing students’
abilities in the conversion from one mode
of representation to another. The latter
program was successful in developing
students’ flexibility to select the most
appropriate approach in solving tasks in

functions and to use the geometric approach
in function problems efficiently.

6.2. Recommendations for further
research

Research on the identification of the
phenomenon of compartmentalization in the
learning of functions and other concepts
should be expanded. The present paper
provides support to the systematic use of
appropriate statistical tools, such as the
implicative statistical analysis of R. Gras
(1996), to assess and analyze students’
understanding of functions or other
mathematical concepts. A continued
research focus is needed to find ways to
breach the compartmentalized way of
thinking in students. The research directed
towards finding ways to develop students’
flexibility in using different registers of
representations of functions and in moving
from one to another, described briefly above,
continues so as to provide explanations for
the success of the two aforementioned
experimental programs and to determine
those features of the interventions that were
particularly effective in accomplishing de-
compartmentalization. There is a need for
longitudinal studies in the area of registers
of representations and problem solving in
functions to enhance our understanding of
the effectiveness and appropriateness of
intervention studies like the aforementioned
one. Additional studies of a qualitative nature
are also needed to uncover students’
difficulties in the particular domain, to
expand the knowledge of how students
interact with different modes of
representations of functions in a
conventional setting or a technological
environment and how they move from a
particular approach, i.e. an algebraic
strategy to a more advanced one, i.e. a
geometric approach in solving tasks on
functions. The results of such attempts may
help teachers and researchers at the
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university and high school levels to place
emphasis on certain dimensions of the notion
of function and the pedagogical approaches
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Learning Mathematics: Increasing the

Value of Initial Mathematical Wealth

Adalira Sáenz-Ludlow  1

A sign may recall a certain concept or combination of concepts from somebody’s memory,
and can also prompt somebody to certain actions.  In the first case we shall call a sign a
symbol, in the second a signal.  The (nature of the) effect of the sign depends on context
and the actual mental situation of the reader.  Van Dormolen, 1986, p.157.

RESUMEN

Usando la teoría de signos de Charles Sanders Peirce, este artículo introduce la noción
de riqueza matemática. La primera sección argumenta la relación intrínseca entre las
matemáticas, los aprendices de matemáticas, y los signos matemáticos. La segunda,
argumenta la relación triangular entre interpretación, objetivación, y generalización. La
tercera, argumenta cómo el discurso matemático es un medio potente en la objetivación
semiótica. La cuarta sección argumenta cómo el discurso matemático en el salón de
clase, media el aumento del valor de la riqueza matemática del alumno, en forma
sincrónica y diacrónica, cuando él la invierte en la construcción de nuevos conceptos.
La última sección discute cómo maestros, con diferentes perspectivas teóricas, influyen
en la dirección del discurso matemático en el salón de clase y, en consecuencia, en el
crecimiento de la riqueza matemática de sus estudiantes.

PALABRAS CLAVE:  Riqueza matemática, interpretación, relación con signos,
la tríada interpretación-objetivación-generalización.

ABSTRACT

Using the Peircean semiotic perspective, the paper introduces the notion of mathematical
wealth.  The first section argues the intrinsic relationship between mathematics, learners
of mathematics, and signs.  The second argues that interpretation, objectification, and
generalization are concomitant semiotic processes and that they constitute a semiotic
triad.  The third argues that communicating mathematically is a powerful means of semiotic
objectification.  The fourth section presents the notion of mathematical wealth, the learners’
investment of that wealth, and the synchronic-diachronic growth of its value through
classroom discourse.  The last section discusses how teachers, with different theoretical
perspectives, influence the direction of classroom discourse and the growth of the learner’s
initial mathematical wealth.
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KEY WORDS:  Mathematical  Wealth,  Interpretation, Relationships with Signs,
The Triad Intepretation-Objectification-Generalization.

RESUMO

Usando a teoria de signos de Charles Sanders Peirce, este artigo introduz a noção de
riqueza matemática. A primeira secção argumenta a relação intrínseca entre a
matemática, os aprendizes de matemáticas, e os signos matemáticos. A segunda,
argumenta a relação triangular entre interpretação, objetivação e generalização. A terceira,
argumenta como o discurso matemático é um potente meio na objetivação semiótica. A
quarta seção argumenta como o discurso matemático na sala de aula adequar o aumento
do valor da riqueza matemática do aluno, em forma sincrônica e diacrônica, quando ele
inverte a construção de novos conceitos. A última seção discute como maestros, com
diferentes perspectivas teóricas, influem na direção do discurso matemático na sala de
aula e, conseqüentemente, no crescimento da riqueza matemática de sus estudantes.

PALAVRAS CHAVES:  Riqueza matemática, interpretação, relação com signos,
a tríade interpretação-objetivação-generalização.

RÉSUMÉ

En utilisant la perspective sémiotique peircienne, cet article introduit la notion de richesse
mathématique. La première section soutient qu’il y a une relation intrinsèque entre les
mathématiques, les apprenants des mathématiques et les signes. La deuxième section
soutient que l’interprétation, l’objectivation et la généralisation sont des processus
sémiotiques concomitants et qu’ils constituent une triade sémiotique. La troisième section
soutient que la communication mathématique est un puissant moyen sémiotique
d’objectivation. La quatrième section présente la notion de richesse mathématique,
l’investissement de cette richesse par les apprenants et la croissance synchronique et
diachronique de sa valeur à travers le discours de la salle de classe. La dernière section
discute de la façon dont les enseignantes et enseignants, avec des perspectives
théoriques différentes, agissent sur l’orientation de la discussion dans la salle de classe
et sur l’enrichissement de la pensée mathématique initiale des apprenants.

MOTS CLÉS: Richesse mathématique, interprétation, relation avec des signes,
la triade interprétation-objectivation-généralisation.

Mathematics and its Intrisic
Relationship with Signs

Since ancient times, philosophers and
mathematicians alike have been
concerned with the definition of
mathematics as a scientific endeavor and

as a way of thinking.  These definitions
have evolved both according to the state
of the field at a particular point in time and
according to different philosophical
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perspectives.  Davis and Hersh, assert that
“each generation and each thoughtful
mathematician within a generation
formulates a definition according to his
lights” (1981, p. 8).  To define mathematics
is as difficult as to define signs.  It is not
easy to define either one without
mentioning the other, as it is not easy to
define them in a paragraph and even less
in a couple of sentences.  Mathematicians
make use of and create mathematical signs
to represent, “objectify”, or encode their
creations.  On the other hand, learners
interpret mathematical signs and their
relationships both to decode the conceptual
objects of mathematics and to objectify (i.e.,
encode) their own conceptualizations.

All kinds of signs and sign systems are
ubiquitous in our lives but so is
mathematics.  Given the fascinating and
ineludible dance between mathematics and
signs, it is not surprising that some
mathematicians become semioticians.
Peirce, for example, dedicated several
volumes to analyze the relationship
between mathematical objects and
mathematical signs (The New Elements of
Mathematics, Vols. I, II, III, IV, 1976) as well
as several essays to discuss the essence
of mathematics (for example, the one
published in Newman’s World of
Mathematics, 1956).  Peirce defines
mathematics as the science that draws
necessary conclusions and its propositions
as “fleshless and skeletal” requiring for their
interpretation an extraordinary use of
abstraction.  He also considers that
mathematical thought is successful only
when it can be generalized.  Generalization,
he says, is a necessary condition for
mathematical thinking.

Rotman (2000), inspired by Peirce’s theory,
has dedicated a book to define
mathematics as a sign.  At the beginning
of his book, he gives an overarching

definition of mathematics to conclude that
mathematics is essentially a symbolic
practice.

Mathematics is many things; the
science of number and space; the
study of pattern; an indispensable tool
of technology and commerce; the
methodological bedrock of the
physical sciences; an endless source
of recreational mind games; the
ancient pursuit of absolute truth; a
paradigm of logical reasoning; the
most abstract of intellectual
disciplines.  In all of these and as a
condition for their possibility,
mathematics involves the creation of
imaginary worlds that are intimately
connected to, brought into being by,
notated by, and controlled through the
agency of specialized signs. One can
say, therefore, that mathematics is
essentially a symbolic practice resting
on a vast and never-finished
language—a perfectly correct but
misleading description, since by
common usage and etymology
“language” is identified with speech,
whereas one doesn’t speak
mathematics but writes it.  (2000, p.
ix, emphasis added).

But where does this symbolic practice
come from?  Is mathematics, as an
expression of the symbolic behavior of the
human species, a part of all cultures?
Davis and Hersh (1981) argue that
mathematics is in books, in taped lectures,
in computer memories, in printed circuits,
in mathematical machines, in the
arrangement of the stones at Stonehenge,
etc., but first and foremost, they say, it must
exist first in people’s minds.  They
acknowledge that there is hardly a culture,
however primitive, which does not exhibit
some rudimentary kind of mathematics.
There seems to be a common agreement
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among White (1956), Wilder (1973), Bishop
(1988), and Radford (2006a) for whom
mathematics is essentially a cultural
symbolic practice that encapsulates the
progressive accumulation of constructions,
abstractions, generalizations, and
symbolization of the human species.
Progress, White contends, would have not
been possible if it were not for the human
ability to give ideas an overt expression
through the use of different kinds of signs
(or what he calls the human symbolic
behavior).  He asserts that human
communication, as the most important and
general of all symbolic behaviors, facilitates
new combinations and syntheses of ideas
that are passed from one individual to
another and from one generation to the
next.  White also stresses that mathematics
like language, institutions, tools, the arts,
etc.   is a cultural expression in the stream
of the total culture.  In fact, he argues that
mathematics is a synthesizing cultural
process in which concepts react upon
concepts and ideas mix and fuse to form
new syntheses.  For White, culture is the
locus of mathematical reality:

Mathematical truths exist in the
cultural tradition in which the
individual is born and so they enter
his mind from the outside.  But apart
from cultural tradition, mathematical
concepts have neither existence nor
meaning, and of course, cultural
tradition has no existence apart from
the human species.  Mathematical
realities thus have an existence
independent of the individual mind,
but are wholly dependent upon the
mind of the species.  (1956, pp.
2350-2351, emphasis added)

If mathematics is a symbolic practice, then
the understanding of the nature of sign
systems (i.e. the networking of signs over
signs to create new sign-references

according to a particular syntax, grammar,
and semantics) is important for the
teaching and learning of mathematics.
Given that individuals, by nature, possess
symbolic behavior and mathematics is a
symbolic practice, then why do some
students come to dislike mathematics as
a subject and very soon fall behind?  In
general, semiotics theories give us a
framework to understand the mathematical
and the non-mathematical behavior of our
students.  Among different theoretical
perspectives on semiotics, Peirce’s theory
of signs helps us to understand how we
come to construct symbolic relationships
based on associative iconic and indexical
ones.  A relation is iconic when it makes
reference to the similarity between sign
and object; it is indexical when it makes
reference to some physical or temporal
connection between sign and object; and
it is symbolic when it makes reference to
some formal or merely agreed upon link
between sign and object, irrespective of
the physical characteristics of either sign
or object.

Representation and interpretation are two
important aspects of Peirce’s theory.  He
sees representation as the most essential
mental operation without which the notion
of sign would make no sense (Peirce,
1903) and considers that the mind comes
to associate ideas by means of referential
relations between the characteristics of
sign-tokens and those of the objects they
come to represent.  As for interpretation,
he considers that without the interpretation
of signs, communicating with the self and
with others becomes an impossible task
(Peirce, CP vols. 2 and 4, 1974).  That is,
without being interpreted, a sign as a sign
does not exist.  What exists is a thing or
event with the potential of being interpreted
and with the potential of becoming a sign.
Metaphorically speaking, a sign is like a
switch; it becomes relevant and its
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existence becomes apparent only if it is
turned on-and-off, otherwise, the switch is
just a thing with the potential to become a
switch.  Likewise, a sign-token becomes a
sign only when its relationship to an object
or event is turned on in the flow of attention
of the interpreting mind.  That cognitive
relationship between the sign-token and
the interpreting mind is essential in Peirce’s
semiotic theory; in fact, it is what
distinguishes his theory from other theories
of signs.  He crystallizes this interpreting
relation between the sing-token and the
individual as being the interpretant of the
sign.  This interpretant has the potential to
generate a new sign at a higher level of
interpretation and generalization.  At this
higher level, the new sign could, in turn,
generate other iconic, indexical, or
symbolic relationships with respect to the
object of the sign.  However, while the
individual generates new interpretants, the
object represented by the sign undergoes
a transformation in the mind of the
individual who is interpreting.  That is, the
object of the sign appears to be filtered by
the continuous interpretations of the
learner.  In summary, Peirce considers the
existence of the sign emerging both from
the learner ’s intellectual labor to
conceptualize the object of the sign and
from the construction of this object in the
learner’s mind as a result of his intentional
acts of interpretation.

A sign stands for something to the
idea that it produces or modifies. Or,
it is a vehicle conveying into the
mind something from without.  That
for which it stands is called its object;
that which it conveys, its meaning;
and the idea to which it gives rise,
its interpretant. (CP 1.339; emphasis
added)

By a Sign I mean anything whatever,
real or fictile which is capable of a

sensible form, is applicable to
something other than itself…and
that is capable of being interpreted
in another sign which I call its
Interpretant as to communicate
something that may have not been
previously known about its Object.
There is thus a triadic relation
between any Sign, and Object, and
an Interpretant.  (MS 654. 7)
(Quoted in Pamentier, 1985;
emphasis added).

Peircean semiotics helps to understand
and explain many aspects of the
complexity of the teaching and learning of
mathematics.  For example, teachers’ and
learners’ expressions of their
interpretations of mathematical signs by
means of writing, reading, speaking, or
gesturing; the interrelationship of the
multiple representations of a concept
without confounding the concept with any
of its representations; and the dependency
of mathematical notation on interpretation,
cultural context, and historical convention.
In trying to understand the semiotic nature
of the teaching and the learning of
mathematics, the above list about the
semiotic aspects of the teaching-learning
activity is anything but complete.

Brousseau, for example, contends that
mathematicians and teachers both perform
a “didactical practice” albeit of a different
nature.  Mathematicians, he says, do not
communicate their results in the form in
which they create them; they re-organize
them, they give them the most general
possible form; “they put knowledge into a
communicable, decontextualized,
depersonalized, detemporalized form”
(1997, p. 227).  This means, that they
encode their creations using mathematical
sign systems or they create new signs if
necessary.  That is, they objectify or
symbolize their creations (i.e., knowledge
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objects) through spacio-temporal signs.  On
the other hand, the teacher undertakes
actions in the opposite direction.  She,
herself, interprets mathematical meanings
embedded in spacio-temporal signs (sign-
tokens), decodes conceptual objects, and
looks for learning situations that could
facilitate the endowment of those sign-tokens
with mathematical meanings in the minds of
the learners.  Thus, mathematicians and
teachers of mathematics have a necessary
interpretative relationship with the sign
systems of mathematics (i.e., semiotic
mathematical systems) because they
continuously use them to encode, interpret,
decode, and communicate the mathematical
meanings of conceptual objects.

Teacher’s and Learner’s
Interpretations and Objectifications

The interpretation of signs is important for
two reasons.  First, signs are not signs if
they are not interpreted; being a sign
means being a sign of something to
somebody.  Second, the meaning of a sign
is not only in the sign but also in the mind
interpreting that sign.  Now the question is:
Does a sign objectify?  According to
Peirce’s definition of signs, the answer is
yes.  A sign does objectify (i.e., It does make
tangible) the object (conceptual or material)
that it stands for.  However, the sign not
only objectifies but it also communicates
(to the interpreting mind) something that
has not been previously known about the

object.  Thus, Peirce’s definition of signs
implies a continuous process of
interpretation and as a consequence, a
concomitant process of gradual
objectification.

Radford (2006b), on the other hand,
considers that to objectify is to make visible
and tangible something that could not be
perceived before.  He defines
objectification as “an active, creative,
imaginative, and interpretative social
process of gradually becoming aware of
mathematical objects and their properties”.
This definition is not in contradiction with
Peirce’s definition of signs.  Radford (2003)
also defines means of objectification as
“tools, signs of all sorts, and artifacts that
individuals intentionally use in social-
meaning-making processes to achieve a
stable form of awareness, to make
apparent their intentions, and to carry out
their actions to attain the goal of their
activities” (p. 41).  This definition is also in
harmony with Peirce’s definition of
interpretant.

Since mathematical objects make their
presence manifest only through signs and
sign systems, how can teachers help
learners to enter into the world of these
semiotic systems and break the code, so
to speak, to “see” those objects by
themselves?  Which mathematical objects
do learners interpret from signs2?  Or  better,
what “objects” do sign-tokens stand for in
the minds of learners and teachers? Would

    Peirce gave several definitions of signs without contradicting previous definitions; instead he extended them.  The

invariant in his definitions is the triadic nature of the sign.  The variation is in the names he gave to the sign-vehicle/ sign-

token or material representation of the sign.  First, he called sign the material representation of the sign, then sign-vehicle,

and then representamen.  Some mathematics educators have favored the sign triad object-sign-interpretant, others, like

myself, have favored the sign triad object-representamen-interpretant because it does not use the word sign to indicate,

at the same time, the triad and a term in the triad.  In this paper, I use the words representamen, representation, and sign-

token interchangeably.  However, Peirce used the term representation in the general sense of being a necessary operation

of the human mind.

2
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learners and teacher ‘interpret’ the same
mathematical objects (i.e., knowledge
objects) from sign relations in mathematical
sign systems?  Who objectifies what?  What
are the “products or effects” of teacher’s and
learners’ interpretations and objectifications?
What are the teacher’s interpretations of the
learners’ interpretations?  It appears that
teachers’ and learners’ interpretations and
objectifications go hand in hand in the
teaching-learning activity.  Because of the
triadic nature of the sign, there is a necessary
and concomitant relationship between
objectification and interpretation; there is no
interpretation without objectification and no
objectification without interpretation.  In
addition, these two processes are linked to a
third concomitant process, the process of
generalization.

Mathematicians objectify their creations
inventing new mathematical signs or
encoding them, using already established
signs and sign systems.  Teacher and
learners re-create knowledge objects by
interpreting mathematical signs in a variety
of contexts; by doing so, they undergo their
own processes of objectification. There
seems to be running, in parallel, three
processes of objectification: the
objectification of the teacher, the
objectification of the learners, and the
teacher’s objectification of the learners’
objectifications.  This seems to be a
cumbersome play with words, although this
is at the heart of the interrelationship between
teaching and learning.  Obviously, teacher
and learners objectify, but do they objectify
the same thing?  Are these objectifications
isomorphic or at least do they resemble each
other?  Is the teacher aware of these
processes of objectification?  If so, then the
teacher has the potential: (a) to question and
validate her own interpretations and
objectifications; (b) to make hypotheses
about the learners’ objectifications; (c) to
question the learners to validate her

hypothesis in order to guide their processes
of interpretation and objectification; and (d)
to differentiate between her interpretations
and objectifications and the learners’
interpretations and objectifications.

When teachers and learners engage in the
teaching-learning activity, who interprets
and what is interpreted is somewhat
implied, but it is nevertheless tacit, in the
processes of objectification and
interpretation.  Obviously, in one way or
another, teachers appear to play an
important role in the learners’ processes of
interpretation and objectification.  Brousseau
appears to indicate these levels of
interpretation.  “The teacher’s work …
consists of proposing a learning situation to
the learner in such a way that [the learner]
produces her knowing as a personal answer
to a question and uses it or modifies it in order
to satisfy the constraints of the milieu [which
is managed by necessary contextual and
symbolic relationships] and not just the
teacher’s expectations” (1997, p. 228,
emphasis added).  Here, Brousseau points
out the difference between learners’
interpretations and teachers’ interpretations
and intentions.  The question is whether or
not the teacher ’s intentions and
interpretations are realized in the students’
interpretations and objectifications.  In other
words, do the teacher’s and the learners’
interpretations and objectifications, at least,
resemble each other?

The teacher may design learning situations
to induce learners’ construction of
mathematical objects and relationships
among those objects; or the teacher may
design learning situations in which the
mathematical object is directly delivered as
if it were a cultural artifact ready to be
“seen” and memorized by the learners,
while saving them the cost of their own
abstractions and generalizations.  In the
latter case, the learners could be
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objectifying only the iconic or indexical
aspects of the mathematical signs without
capturing the symbolic aspects of those
signs and their symbolic relations with other
signs.  In the former case, the learners
capture both the symbolic aspects of the
signs and their symbolic relations with other
signs.  This means that the learner is able
to unfold those signs to “see” not only the
symbolic aspects but also the indexical and
iconic aspects embedded in them.  Thus,
learners and teacher could be interpreting
different aspects of the mathematical signs
(iconic, indexical, or symbolic) and, in
consequence, interpreting the nature of
mathematical objects from different levels
of generalization and abstraction.

But what is the nature of the mathematical
objects?  How many types of objects could
be interpreted from mathematical signs?
Duval (2006) calls our attention to different
types of objects:

(1) Objects as knowledge objects when
attention is focused on the invariant of
a set of phenomena or on the invariant
of some multiplicity of possible
representations.  Mathematical objects
like numbers, functions, vectors, etc. are
all knowledge objects.

(2) Objects as transient phenomenological
objects when the focus of attention is
on this or that particular aspect of the
representation given (e.g., shape,
position, size, succession, etc.).

(3) Objects as concrete objects when the
focus of attention is only on their
perceptual organization.

Thus given a sign-token (i.e., a
representamen or a representation), one
could interpret at face value a concrete object
if one focuses strictly on the material aspects
of this semiotic means of objectification

without constructing relationships with other
representations.  One could also interpret a
phenomenological object if one goes beyond
pure perception and focuses on aspects of
those representations in space and time.   Or
one could also interpret a knowledge object
if one focuses on the invariant relations in a
representation or among representations.
For example, Duval (2006) considers that the
algebraic equation of a line and its graph
could be seen as phenomenological objects
when one focuses on the material aspects
of these representations (i.e., iconic and
iconic-indexical aspects of the sign-tokens
or representations); they could be knowledge
objects if one focuses on the invariance of
these representations (i.e., symbolic
aspects).  Once one is able to interpret and
to objectify knowledge objects, one should
be able to unfold the phenomenological (i.e.,
iconic, iconic-indexical) and material (i.e.,
iconic) aspects of those objects.  However,
if one objectifies only phenomenological and
concrete objects, one would not necessarily
come up with the symbolic aspects of their
corresponding knowledge objects.

In a nutshell, Duval’s characterization of
‘objects’ points out the semiotic stumbling
blocks of the teaching and learning of
mathematics.  In this characterization, the
manifestation of a knowledge object
depends not only on its representation but
also on the human agency of the
interpreter, user, producer, or re-producer
of that object.  Objects could be either the
interpretation of pure symbolic relations
embedded in the sign-tokens or
representations (i.e., knowledge objects or
pure signifieds); or they could be pure
material tokens with no signifieds (i.e.,
concrete objects or concrete things); or
they could be materially based tokens
interpreted in time and space (i.e.,
phenomenological objects).  The best case
would be when the knowledge object is
objectif ied in space and time with
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structured signifieds and with the potential
of being used again in private and inter-
subjective conceptual spaces; and, vice
versa, when mathematical knowledge
objects are decoded from the material sign-
tokens or representations without escaping
their extension in space and their
succession in time.

As teachers and learners engage in the
teaching-learning activity, which objects are
the teacher referring to and which objects are
the learners interpreting, objectifying, and
working with?  In the best of all scenarios,
teacher and learners could interpret, from the
same sign-token or representation, the same
knowledge object.  However, sometimes
learners might only be interpreting concrete
objects (i.e., concrete marks) or
phenomenological objects missing, in the
process, the knowledge object; meanwhile
the teacher might be interpreting that learners
are interpreting knowledge objects. This
situation would clearly mark a conceptual
rupture between teacher and learners.
Therefore, interpreting in the classroom is
a process that unfolds at three levels: (1)
the level of those who send an intentional
message (the teacher or the students); (2)
the level of those who receive and interpret
the message (the learners or the teacher);
and (3) the level of the sender’s interpretation
of the receiver’s interpretation.  Thus, in the
teaching-learning activity, the interpretation
process is not only a continuous process of
objectification but it is also a relative
process (relative not only to teachers and
learners but also relative to their prior
knowledge, not to mention their beliefs
about knowledge and knowing).

Communicating  Mathematically as a
Means of Objectification

Communication in the mathematics
classroom was viewed as depending

exclusively on language (syntax and
grammar), the active and passive lexicon
of the participants, and the nature of the
content of the message (Austin and
Howson, 1979).  Now, we have become
aware that communication depends not
only on natural language but also on the
specific sublanguages of different fields of
study, on linguistic and non-linguistic
semiotic systems, and on a variety of social
and cultural contexts in which the content
of the message is embedded (Halliday,
1978; Habermas, 1984; Bruner, 1986;
Vygotsky, 1987; Steinbring et al. 1998).
Communication is also influenced by the
behavioral dispositions and expectations
of the participants as well as by their
intersubjective relations of power
(Bourdieu, 1991).  Thus, perspectives on
communication, in general, appear to have
gained in complexity rather than in
simplicity.  Hence, perspectives on
communication in the mathematics
classroom have changed.  This
communication depends on natural
language, mathematical sublanguage, and
mathematical sign systems that mediate
teacher’s and learners’ interpretations of
mathematical objects.

Rotman (2000) points out a special feature
of mathematical communication.  He
contends that in order to communicate
mathematically, we essentially write.  He
contends that writing plays not only a
descriptive but also a creative role in
mathematical practices.  He asserts that
those things that are described (thoughts,
signifieds, and notions) and the means by
which they are described (scribbles) make
up each other in a reciprocal manner.
Mathematicians, as producers of
mathematics, Rotman says, think their
scribbles and scribble their thinking.
Therefore, one is induced to think that
learners of mathematics should do the
same in order to produce and increase their
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personal ‘mathematical wealth’ as a
product of their own mathematical labor.
Such wealth does not accumulate all at
once, but rather, it accumulates gradually
in a synchronic as well as in a diachronic
manner.  We will enter the discussion of
mathematical wealth and its synchronic-
diachronic formation in the next section.

It appears that communicating
mathematically is first and foremost an act
of writing in the form of equations,
diagrams, and graphs, supported all along
by the specialized sublanguage of
mathematics (mathematical dictionaries
are a living proof that a mathematical
sublanguage exists).  We also need to
consider that writing is not an isolated act.
Acts of writing are concomitant with acts of
reading, listening, interpreting, thinking, and
speaking.  All these acts intervene in
semiotic processes of objectification
resulting from personal processes of
interpretation by means of contextualization
and de-contextualization, concretization
and generalization.  That is, communicating
mathematically depends on the synergy of
the processes of interpretation,
objectification, and generalization.

Gay (1980), Rossi-Landi (1980), and
Deacon (1997) argue that any semiological
system only has a finite lexicon but its
semantics accounts for an unlimited series
of acceptable combinations and that some
of these combinations propose original
ways of describing linguistic and
extralinguistic reality.  By the same token,
the semiotic system of mathematics has a
finite number of tokens and a finite set of
axioms, theorems, and definitions (Ernest,
2006).  When these elements are
combined, they account for a large number
of acceptable combinations that describe
or justify, create or interpret, prove or verify,
produce or decode already culturally
structured mathematical objects.  In

discovering, constructing, apprehending,
reproducing, or creating mathematical
objects, reading and writing, listening and
speaking become essential means for
producing and interpreting combinations of
referential relations (whether iconic,
indexical, or symbolic) in a space that is
both visible and intersubjective.

Vygotsky (1987) contends that in any
natural language the writing and speaking
acts are of different nature.  Writing, he
says, is a monological activity in which
context is mental rather than physical and
therefore it does not benefit from the
immediate stimulation of others.  This
makes writing a demanding mental activity
that requires not only the syntax and
grammar of the language in use, but also
the conceptual objects (i.e., knowledge
objects) to be encoded or decoded using
particular signs or combination of signs.  In
contrast, Vygostsky argues that oral
dialogue is characterized by the dynamics
of turn-taking determining the direction of
speech: in oral dialogue, questions lead to
answers and puzzlements lead to
explanations.  Written speech, instead, is
not triggered by immediate responses as
in oral dialogue.  In writing, the unfolding
of an argument is based much more on
the personal and private labor of the
individual.  What Vygotsky argues about
written and oral speech in the context of
language can be transferred to the context
of mathematical communication inside and
outside of the classroom.  It is one thing to
clarify one’s mathematical ideas when
debating them and another to produce
them as the result of one’s own isolated
mental labor and personal reflection.  Both
types of communication are commonly
used among mathematicians (Rotman,
2000).  In the last decades, oral and written
modes of interacting in the classroom have
been accepted as appropriate ways of
communicating mathematically in the
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classroom (National Council of Teachers
of Mathematics, Standards, 2000).

Rotman (2000) also considers that writing
and thinking are interconnected and co-
terminous, co-creative, and co-significant.
There is no doubt that for professional
mathematicians who are in the business
of producing mathematical knowledge this
should be the case.  But are writing and
thinking always interconnected, co-
creative, and co-significant activities for the
learners?  Or are the learners using writing
to take into account only the perceptual level
of mathematical signs (i.e., sign-tokens or
concrete objects) to automatically perform
algorithmic computations in order to survive
academically?  Do multiple-choice exams
interfere with the development of the learners’
thinking-writing capacity?  Do teachers make
learners aware that reading, writing, listening,
and speaking are effective means of
objectifying mathematical knowledge
objects?  Do teachers make learners aware
that communicating mathematically is also
constituted by justifying in terms of
explanation, verifications, making valid
arguments, and constructing proofs?

To communicate mathematically in the
classroom, the teacher has: (a) to flexibly
move within and between different semiotic
systems (e.g., ordinary language,
mathematical sub-language, mathematical
notations, diagrams, graphs, gestures, etc.)
(Duval 2006); (b) to refer to mathematical
objects that are other than visible and
concrete (e.g., patterns, variance, and
invariance across concepts) (see for
example, Radford, 2003); (c) to address the
learners in ways that are supposed to be
meaningful to them (see for example,
Ongstad, 2006); and (d) to express
(verbally and nonverbally) the encoding
and decoding of mathematical objects
(Ongstad, 2006).  Thus communicating
mathematically between teacher and

learners also requires the triad referring-
addressing-expressing within and between
several semiotic systems.

Interpreting mathematical signs is, in
essence, a dynamic process of objectification
in which the individual gradually becomes
aware of knowledge objects represented in
verbal, algebraic, visual, and sometimes
imaginary representations (Davis and Hersh,
1981) and these representations have their
own inherent properties.  Becoming aware
of knowledge objects through a variety of
representations is in itself a demanding
intellectual labor because of the
characteristics of different representations.
Skemp (1987), for example, points out
differences between visual and verbal/
algebraic representations: (1) Visual
representations, such as diagrams,
manifest a more individual and analog type
of thinking; in contrast, verbal/algebraic
representations manifest a more socialized
type of thinking.  (2) Visual representations
tend to be integrative or synthetic; in
contrast, verbal/algebraic representations
are analytical and show detail.  (3) Visual
representations tend to be simultaneous; in
contrast, verbal/algebraic representations
tend to be sequential.  (4) Visual
representations tend to be intuitive; in
contrast, verbal/algebraic representations
tend to be logical.  All these tacit
differentiations are part and parcel of the tacit
knowledge underpinning the classroom
mathematical discourse and they may
create difficulties for some learners
(Presmeg, 1997).  Yet another source of
tacit knowledge in the classroom discourse
is the variety of speech genres in
mathematical discourse, for example,
debating, arguing, justifying, and proving
(Seeger, 1998).  For Rotman, persuading,
convincing, showing, and demonstrating
are discursive activities with the purpose
of achieving intersubjective agreement,
generalization, and semiotic objectification.
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This kind of tacit knowledge is not even
remotely considered to be a part of the
institutionalized school curriculum and
many teachers are not even aware of it.
The lack of explicitness of the tacit
knowledge (expected to be understood by
the learners) contributes to their abrupt and
foggy entrance into the territory of the
mathematical world, where those who will
successfully accumulate ‘mathematical
wealth’ are the ones who have the capacity
of making explicit for themselves the tacit
underpinnings of mathematical discourse
and the triadic nature of the process of
conceptualization (interpretation,
objectification, and generalization).

To summarize, the emergence of
mathematical objects and their meanings
are in no way independent from intentional
acts of interpretation and objectification
mediated by reading and writing, speaking
and listening.  These acts are essential in
the gradual mathematical growth of the
mathematical wealth of the learners.
Communicating mathematically in terms of
reading, writing, listening, and debating
should be considered means of
interpretation and objectification.  Hence,
knowledge of semiotics appears to be a
necessary conceptual tool in the classroom,
not only for theoretical and explanatory
purposes but also for pragmatic ones.

Communicating Mathematically and
Mathematical ‘Wealth’

We would like to consider mathematical
wealth as a metaphor to refer to the learner’s
continuous accumulation of mathematical
knowledge as the product of his intellectual
labor in an intra-subjective or inter-subjective
space.  This mathematical wealth is personal,
although socially and culturally constituted,
in addition to continuously being in the
making.

As learners initiate and continue their
journey in a mathematical world (which is
planned by the institutionalized curriculum
and/or by the learners’ own interests), they
continuously invest their existing
mathematical wealth in order to increase
its value.  This investment is a continuous
process of evolution, development, and
transformation of the learner’s referential
relations using signs of iconic, indexical,
and symbolic nature.  Sign-tokens are not
inherently icons, indices, or symbols; they
are so only if interpreted in that way.  The
learner’s interpretation of the referential
relations of signs is manifested in his verbal
and written responses.  Say for example,
that a learner is capable of keeping in
memory the expression “positive times
positive is positive and negative times
negative is positive”(*). What is the
meaning of this expression for a learner at
different phases of his mathematical
journey?  Does it change?  Does it remain
the same?

It could be that he has memorized this
expression as we memorize prayers when
we are little; they just stick in our minds
and we regurgitate them, even if we do not
know what they mean.  It could be that the
learner interprets that expression as
follows: “I remember that with a ‘-’and a ‘-
’ I can make a ‘+’’; and with a ‘+’ and a ‘+’ I
can only make a ‘+’”.  In these cases, the
learner has only an iconic relationship with
the expression (*).  The learner is trying to
make sense by focusing on the physical
resemblances of the sign-tokens.  Would
he be able to ascend from the level of
having an iconic relation with the
expression (*) to the level of having an
indexical relation with it?  If the learner
says, for example, “I know that 2 times 3
is 6 and -2 times -3 is 6”, then the learner
has an iconic-indexical relation with the
expression (*) because he has a particular
case that, in a way, indicates the possibility
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of the generality of this statement.
However, when the learner comes to
transform the above expression into an
expression like “xy>0 only in cases when
x>0 and y>0 or when x<0 and y<0” or to re-
cognize that “-x” could be positive or
negative depending on the value of x; then
the learner has a symbolic relation with the
expression (*).  In the latter, the learner has
come to enrich the meaning of the
expression (*) as he works with variable
quantities in the context of algebra.

In fact, as the learner comes to develop a
symbolic relationship with this expression,
or the expression (*) becomes symbolic for
the learner, he will also come to have an
iconic and iconic-indexical relationship with
it.  This is to say that once a learner has a
symbolic relation with a sign, he would be
able to unfold it into iconic and iconic-
indexical relations whenever necessary.
But the other way around is not necessarily
true.  A learner, who has an iconic or an
iconic-indexical relationship with a sign-
token (in this case the expression (*)) may
not necessarily have a symbolic
relationship with it (i.e., the sign-token does
not yet stand for a knowledge object in the
mind of the learner).  What does this mean
in terms of objects?  A learner who has
constructed either a concrete or a
phenomenological object may very well
have not yet constructed a knowledge
object.  However, if the learner has
constructed a knowledge object, one can
safely infer that he also has constructed
the corresponding concrete and
phenomenological objects (i.e., the learner
could be able to deconstruct the knowledge
object into phenomenological and concrete
objects).

When a learner repeats the expression
“positive times positive is positive and
negative times negative is positive”, it
means that he could have an iconic, an

iconic-indexical, or a symbolic relationship
with the expression.  What is the
relationship that the learner has
constructed?  This is not evident until the
learner has the opportunity to use it in
different contextual situations.  How does
the teacher, who is in charge of guiding
the learner, interpret the kind of relationship
that the learner has with the expression?
The teacher could have a symbolic
relationship with the expression (*) and
think that the learner also has a symbolic
relationship with it.  In addition, if the
teacher considers that any sign-token or
representation is inherently symbolic,
independently of the learner ’s
interpretation, she would firmly believe that
the learner could have only a symbolic
relationship with it.  Henceforth, the teacher
will not change her interpretation of the
learner’s interpretation, and this might
rupture the semantic l ink in the
communication between the teacher and
the learner.  The teacher’s expectations
would run at a level higher than the current
level of the learner’s possibilities.  This
could prompt the teacher to misjudge the
capabilities of the learner and to give up
on the learner instead of creating new
learning situations to induce the
construction of the learner’s symbolic
relationship with sign-tokens (in this case
the expression (*)).  The worst case would
be when the learner stops increasing the
value of his initial mathematical wealth and
soon falls behind others and with feelings
of not having any intellectual capacity for
mathematics.

The teacher needs to understand that the
expression (*) or any other sign could have
iconic, iconic-indexical, or iconic-indexical-
symbolic meanings for the learner at
different points of his mathematical journey.
That is, the teacher should be aware that
what one routinely calls “symbols” are
nothing else than sign-tokens that can be

237



Relime

interpreted at different levels of
generalization.  The teacher who comes
to understand what is symbolic and for
whom, what is iconic-indexical and for
whom, what is iconic and for whom,
should also come to see her teaching
deeply rooted in her own learning of
mathematics and in her learning of her
students’ learning.

A teacher unaware of hers and the learners’
possible iconic, indexical, and symbolic
relationships with signs has no grounds for
making hypotheses about the learners’
interpretations.  Then, the teacher will only
interpret her own interpretations but not
those of the learners.  That is, the teacher
comes to collapse the three levels of
interpretation (her own interpretation, the
learners’ interpretation, and her
interpretation of the learner’s interpretation)
making it only one muddled level that barely
reflects the cognitive reality of those
involved in the teaching-learning activity.  In
doing so, the teacher loses cognitive
contact with the learner and thus the
opportunity to support his personal
processes of re-organization and
transformation of his prior knowledge.  It is
not surprising, then, that Bauersfeld (1998)
noticed that learners are alone in making
their own interpretations and that there is
a difference between “the matter taught”
and “the matter learned”.  In our framework,
this would translate as the existence of a
difference between the matter interpreted
by the teacher, the matter taught by the
teacher, and the matter interpreted by the
learners.

At any given moment, learners start with a
particular set of mathematical
conceptualizations to be transformed and
re-organized.  This initial set of conceptual
elements, with whatever mathematical
value (iconic, indexical, or symbolic) , is
what we would like to call the initial

mathematical wealth.  This wealth, if
invested in well designed learning
situations using a variety of contexts, will
allow the learner to embed iconic
relationships into iconic- indexical
relationships and to embed iconic-
indexical relationships into symbolic
ones.  By doing so, the learner will come
to construct mathematical patterns (at
different levels of generalization), and
regulated combinations of mathematical
signs according to the structure of the
mathematical sign systems he is working
with at that moment.  For example,
learners’ generalization, in the natural
numbers, that multiplication makes bigger
and division makes smaller, has to be re-
conceptualized or re-organized when they
start working with decimals.  Later on,
multiplication needs to be generalized as
an operation with particular properties.
And even later, division needs to be re-
cognized and re-organized as a particular
case of multiplication.  That is, the learner’s
relationship with multiplication and its
results needs to be transcended and
attention needs to be focused on the
nature of the operation itself, leaving
implicit the indexicality of particular
results as well as the iconicity of the sign-
tokens “times” or “x” (like in 4 times 2 or
4x2) used for multiplication in grade
school.  That is, multiplication, in the long
run, should become a symbolic operation
in the mind of the learner and not only the
mere memorization of multiplication facts
and the multiplication algorithm.

Hence, the nature of the investment of the
learner’s mathematical wealth resides in
his capacity to produce new levels of
interpretations and concomitantly new
objects (concrete, phenomenological, and
knowledge objects) at different levels of
generality (iconic, indexical, or symbolic).
This kind of investment increases the
learner’s mathematical wealth and goes
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beyond the manipulation of “sign-tokens 3”.
That is, the value of the investment
increases as the learner’s interpretation of
signs ascends from iconic, to iconic-
indexical, to iconic-indexical-symbolic
along his recursive and continuous
personal processes of interpretation,
transformation, and re-organization.
Moreover, what becomes symbolic at a
particular point in time in the learner’s
conceptual evolution could become the
iconic or iconic-indexical root of a new
symbolic sign at a higher level of
interpretation.  For example, our middle
school knowledge of the real numbers with
the operations of addition and multiplication
becomes the root for interpreting, later on,
the field structure of real numbers (i.e., the
set of real numbers with the operations of
addition and multiplication constitutes an
additive group and a multiplicative group
respectively and also the operation of
multiplication distributives over the
operation of addition).

In summary, learners who become
mathematically wealthy are those who,
along the way, are able to interpret
knowledge objects from concrete sign-
tokens and, in the process, are able to
transcend their phenomenological aspects
(i.e., iconic-indexical) and ascend to
symbolic relationships with them through
continuous acts of interpretation,
objectification, and generalization.  No
matter through what lens one sees teaching
and learning (i.e., learners discover,
construct, or apprehend mathematical
concepts), this triadic intellectual process
(interpretation-objectification-generalization)
is in reality a continuous recursive
synchronic-diachronic process in their
intellectual lives.  This process is not only

      It  is  worthwhile  to  notice  that  the  expression  manipulation of symbols becomes  an oxymoron in Peirce’s theory

of signs and it could be replaced by the expression manipulation of sign-tokens.

2

synchronic.  It would be impossible for the
learner to appreciate, all at once, current
and potential meanings embedded in
contextual interpretations of mathematical
signs.  Only when the learners have
traveled the mathematical landscape for
some time, they are able to “see” deeper
meanings in mathematical signs as they
interpret them in new contexts and in new
relationships with other signs.  Hence, the
process is also diachronic.  In the
diachronicity of the process, the learner
comes to understand the meaning potential
of different signs.

Continuity and recurrence (i.e., going back
in thought to consider something again
under a new light) is the essence of this
synchronic-diachronic process.  Continuity
and recursion allow learners (1) to carry
on with their personal histories of
conceptual development and evolution and
(2) to transcend conceptual experiences
in particular contexts through the
observation of invariance and regularities
as they see those experiences from new
perspectives.  That is, the sequential
nature of the synchronic-diachronic
process upholds all personal acts of
interpretation, objectif ication, and
generalization as well as of self-
persuasion.  Essentially, this is a mediated
and a dialectical process between learner’s
knowing and knowledge in the permanent
presence of the continuous flow of time,
not only synchronically (in the short lived
present) but also diachronically (across
past, present, and future).  As learners
travel through the world of school
mathematics, they construct and interpret
for themselves a network of mathematical
conceptualizations that is continuously re-
organized through mathematical discourse
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(reading, writing, speaking, and listening)
and de-contextualized through abstraction
and generalization.  As the learners’ networks
of mathematical conceptualizations become
increasingly re-organized and transformed
over time, the earlier value of their
mathematical wealth also increases.

Where do Learners Build up and
Consolidate their Mathematical

Wealth?

As learners travel through a particular
territory of the mathematical world (e.g., the
institutionalized school curriculum) they
become mathematically wealthier because
they become better acquainted with the ins
and outs of the territory (i.e., they are able
to produce symbolic interpretations of
signs, or they relate to signs iconically and
indexically but in a systematic manner).
Others have a bird’s eye view of the territory
(i.e., they are able to produce only isolated
iconic, or indexical interpretations of signs
or they relate to signs iconically or
indexically but in an unsystematic manner)
and soon forget they have seen the
landscape because they have made no
generalizations.  Still others are able to
finish their journey traveling on automatic
mode (i.e., using calculators and
memorized manipulations) to establish their
own peculiar relationships with the
mathematical code or mathematical
semiotic systems.  Henceforth, they are
able to produce, at best, only iconic
interpretations from signs that soon will be
forgotten.

The learners’ mathematical wealth is built
in a socio-cognitive classroom environment
grounded on collective mathematical
discourse as opposed to the unidirectional
discourse from the teacher to the students.
The quality of this discourse and the
teacher’s focus of attention on the learners’

mathematical arguments influence the
ways in which learners invest their
mathematical wealth and how they
become mathematically wealthier.  It is well
known that teachers, who are in charge of
directing the classroom discourse, guide
their practices according to conscious or
unconscious theoretical perspectives on
mathematics and the teaching of
mathematics and they focus their attention
on different aspects of classroom
discourse.  Sierpinska (1998) delineates
the theoretical perspectives of teachers
within three ample frameworks:
constructivist, socio-cultural, and
interactionist theories.  Constructivist
perspectives focus primarily on the
learners’ actions and speech while the
actions and speech of the teacher are seen
as secondary; that is, the constructivist
teacher focuses essentially on the learners
and their mathematics.  Socio-cultural
(i,e.,Vygotskian) perspectives focus on the
social and historical character of human
experience, the importance of intellectual
labor, the mediating role of signs as mental
tools, and the role of writing in the individual’s
intellectual development; that is, the socio-
cultural teacher focuses essentially on
culture and mediated socio-cognitive
relations.  Interactionist perspectives focus
on language as a social practice; that is, the
interactionist teacher focuses essentially on
discourse and intersubjectivity.  The
behaviorist perspective could be added to
those emphasized by Sierpinska.  The
behaviorist teacher focuses essentially on
the learners’ performance and pays little
attention, if any, to the learners’ ways of
thinking.  Finally, eclectic teachers seem to
intertwine one or more theoretical
frameworks according to the needs of the
learners and their personal goals as
teachers.

In any classroom, one needs to be cautions
about what could be considered successful
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classroom communication.  Successful
classroom discourse may not be an
indication of successful mathematical
communication.  Steinbring et al. (1998)
contend that learners may be successful
in learning only the rituals of interaction with
their teachers or the routine and stereotyped
frames of communication (like the well-known
initiation-response-evaluation and funneling
patterns).  This kind of communication, they
argue, leaves the learners speechless
mathematically although keeping the
appearance of an exchange of mathematical
ideas.  Brousseau (1997), and Steinbring et
al. (1988), among others, present us with
classical examples in which teachers,
consciously or unconsciously, hurry up or
misguide learners’ processes of
interpretation.  Thus, communicating
mathematically is more than simple ritualistic
modes of speaking or the manipulation of
sign-tokens; it is based on a progressive
folding of meaningful interpretations passing
from iconic, to iconic-indexical, to iconic-
indexical-symbolic, and vice versa the
unfolding of these relations in the opposite
direction.  Or as Deacon (1997) puts it:
“symbolic relationships are composed of
indexical relationships between sets of
indices, and indexical relationships are
composed of iconic relationships between
sets of icons” (p. 75).  That is, more complex
forms of objectification emerge from simpler
forms (i.e., simpler forms are transcended but
remain embedded in more complex ones).

This is to say that the learner’s process of
mathematical interpretation is mediated by
mathematical sign systems (icons, indexes,
or symbols and their logical and operational
relations) to constitute networks of
conceptualizations and strategies for
meaning-making.  Communicating
mathematically is, in fact, a continuous
semiotic process of interpretation,
objectification, and generalization.  The
construction of generalizations takes the

learner from simple iconic relations, to
indexical relations, and then to symbolic
relation (i.e., folding of iconic relations into
indexical ones, and then embedding
indexical relations into symbolic ones) in
order to make new interpretations and new
objectifications that produce new
generalizations.  Moreover, deconstructing
generalizations takes the learner in the
opposite direction (i.e., unfolding of
symbolic relations into iconic-indexical
ones, and unfolding iconic-indexical
relations into iconic ones) in order to
exemplify, in particular cases, the skeletal
invariance arrived at in generalization. Both
directions are necessary because,
together, they manifest not only the
recursive and progressive constructive
power of individual minds but also they
manifest the human and socio-cultural
roots of mathematical thinking.

Concluding Remarks

Using a Peircean perspective on semiotics,
this paper argues the notion of
mathematical wealth.  The initial cognitive
mathematical wealth of any learner begins
early in life.  In his years of schooling and
with the guidance of teachers, this initial
wealth is progressively invested and its
value gradually increased.  The process
of investment is, in essence, a mediated-
dialectical process of decoding a variety
of semiotic systems and, conversely, the
encoding of thoughts and actions in those
semiotic systems that intervene.  Such
systems could be of socio-cultural,
pedagogical, or mathematical nature.

For mathematical wealth to increase in
value in the process of investment, the
learner has to decode not only the
mathematical code but also the tacit code
of socio-cognitive rules of engagement in
the classroom.  A priori and implicitly, he is
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expected to understand, that reading and
writing, constructing and interpreting
mathematical arguments, listening and
speaking, and justifying in the form of
explanation, verification, and proof are
necessary activities for the learning of
mathematics.  He also has to understand
that these activities can effectively mediate
the appropriation and construction of
mathematical meanings from mathematical
signs and the encoding of his own
interpretations and meaning-making
processes back into mathematical signs.

The paper also argues three levels of
interpretation in the classroom: (a) the
learner’s level of mathematical interpretation;
(b) the teacher’s own level of mathematical
interpretation; and (c) the teacher’s level of
interpretation of the learners’ mathematical
interpretations.  It is also argued that
mathematical meanings are not only inherent
in mathematical signs but also inherent in the
learner’s cognitive relationship with those
signs.  Such relationships could be of an
iconic, indexical, or symbolic nature.  These
relationships are not necessarily

disconnected since an iconic relationship
could ascend and become an indexical
relationship, and the latter could ascend
and become a symbolic relationship.  Vice
versa, a symbolic relationship could be
unfolded into an indexical relationship, and
the indexical relationship could be unfolded
into an iconic relationship.  In fact, when
learners manipulate sign-tokens, it is
sometimes necessary, for efficiency, to
keep symbolic relations implicit in one’s
mind.  Keeping the ascending and
descending directions of relationships with
signs and sign systems allow learners to
move from the particular to the general and
from the general to the particular.  The
learners’ relationships with mathematical
signs and sign systems are the result of
mediated-dialectical processes between
the learner’s knowing and knowledge in the
synchronic and diachronic triadic process
of interpretation, objectification, and
generalization.  The reader is referred to
Radford (2003) and Sáenz-Ludlow (2003,
2004, and 2006) for other instances of
learners’ processes of interpretation,
objectification, and generalization.
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Years After the Publication of “On

Denoting” by Bertrand Russell
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RESUMEN

El artículo “On denoting” (en torno a la denotación) de B. Russell, publicado en 1905, es
un hito de la reflexión filosófica sobre el lenguaje. En este artículo, examinamos la reacción
de los alumnos, de una frase inspirada de un ejemplo célebre introducido por Russell, y
de un aserto expresado en lenguaje matemático. Apartándonos del análisis de los datos
experimentales que encierra la interpretación de los conceptos clásicos de realidad y de
racionalidad, proponemos algunas reflexiones que pasan por alto “la objetividad
epistémica estándar de la certeza privada hacia la práctica de la justificación en el interior
de una comunidad comunicativa” (J. Habermas). Concluimos que el lenguaje constituye
un momento muy importante en el cual el sentido de una expresión está fijo; sin embargo,
mantenemos presente en nuestra mente que “el lenguaje, así como cualquier otro sistema
semiótico, funciona en el interior de una red de significados culturales” (L. Radford).

PALABRAS CLAVE:   Lenguaje,  justificación,   sentido,   racionalidad,  verdad,
validez.

ABSTRACT

The article “On denoting” by B. Russell, published in 1905, is a milestone in philosophical
reflection on language. In the present paper, we examine pupils’ reactions both to a
sentence inspired by a celebrated example introduced by Russell and to a statement
expressed in mathematical language. We move away from an interpretation of
experimental data confined to the classical concepts of truth and rationality and propose
instead some reflections that shift “the standard of epistemic objectivity from the private
certainty of an experiencing subject to the public practice of justification within a
communicative community” (J. Habermas). We conclude that language is a very important
moment in which the meaning of an expression is fixed, but we keep in mind that
“language, like any other semiotic system, functions inside a cultural network of
significations” (L. Radford).
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RESUMO

O artigo “On denoting” (em torno da denotação) de B. Russell, publicado en 1905, é um
sinal da reflexão filosófica sobre a linguagem. Neste artigo, examinamos a reação dos
alunos, de uma frase inspirada em um exemplo célebre introduzido por Russell, e de
uma afirmação expressada na linguagem matemática. Nos afastando da análise dos
dados experimentais que contém a interpretação dos conceitos clássicos de realidade e
de racionalidade, propomos algumas reflexiones que passam por alto “a objetividade
epistemica padrão da certeza privada em direção à prática da justificação no interior de
uma comunidade comunicativa” (J. Habermas). Concluímos que a linguagem constitui
um momento muito importante no qual o sentido de uma expressão está fixo; entretanto,
mantemos presente em nossa mente que “a linguagem, assim como qualquer outro
sistema semiótico, funciona no interior de uma rede de significados culturais” (L. Radford).

PALAVRAS CHAVE:   Linguagem,   justificação,  significado,   racionalidade,
verdade, validade.

RÉSUMÉ

L’article “On denoting” (De la dénotation) de B. Russell, publié en 1905, est un jalon de
la réflexion philosophique sur le langage. Dans cet article, nous examinons la  réaction
des élèves à une phrase inspirée d’un célèbre exemple introduit par Russell et à une
assertion exprimée en langage mathématique. En nous écartant de l’analyse des données
expérimentales qui limite l’interprétation aux concepts classiques de vérité et de rationalité,
nous proposons quelques réflexions qui amènent « l’objectivité épistémique standard
de la certitude privée vers la pratique publique de la justification à l’intérieur d’une
communauté communicative » (J. Habermas). Nous concluons que le langage constitue
un moment  très important par lequel le sens d’une expression est fixé, mais nous gardons
présent à l’esprit le fait que « le langage, ainsi que n’importe quel autre système
sémiotique, fonctionne à l’intérieur d’un réseau de significations culturelles » (L. Radford).

MOTS CLÉS :  Langage, justification, sens, rationalité, vérité, validité.

1.  Introduction

Many recent works show that culture and
mathematical thinking are strictly linked
(see for instance Wartofsky, 1979;
Crombie, 1995; Radford, 1997; Furinghetti
& Radford, 2002). And language is an
important element in this link. A quotation
by Radford (making reference to Ilyenkov,

1977, p. 79) will help us to frame more
precisely the focus of our work and its
educational relevance: Radford states that
“language is one of the means of
objectification (albeit a very important one),
but ... there are also several others”;
moreover, “as a means of objectification,
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language does not objectify
indiscriminately. Language, like any other
semiotic system, functions inside a cultural
network of significations, from whence
grammar and syntax draw their meaning”
(Radford, 2003a, p. 141; 2003b)2. The
question with which we are going to deal
in this paper is the following: firstly, can we
consider language as a sort of favourite or
absolute moment in which the meaning of
an expression is fixed? (Let us notice, for
instance, that paradigmatic analysis seeks
to identify the different pre-existing sets of
signifiers which can be related to the
content of texts: Sonesson, 1998).
Secondly, let us remember that, according
to R. Rorty, the discipline presently called
philosophy of language has two different
sources: one of them is the cluster of
problems “about how to systematize our
notions of meaning and reference in such
a way as to take advantage of
quantificational logic”; the latter, explicitly
epistemological, “is the attempt to retain
Kant’s picture of philosophy as providing
a permanent ahistorical framework for
inquiry in the form of a theory of
knowledge” (Rorty, 1979, p. 518). In this
paper we are going to discuss, on the basis
of some experimental data, whether or not
we can always make reference to a definite
set of meanings for linguistic expressions
and, in particular, to a clear notion of truth.

From the historical viewpoint, G. Vattimo
points out that “almost all the most
important and subtle problems of
contemporary language philosophy were
elaborated and faced, for the first time, in
the Middle Ages” (Vattimo, 1993, p. 640;
in this paper the translations are ours). The
medieval doctrine of suppositio is deemed
significant (Bocenski, 1956, pp. 219-230;

     Aristotle distinguished men from animals because of the presence of the logos (logos, often translated by “reason”; but

H.G. Gadamer suggests a proper translation of this term by “language”: Gadamer, 2005, p. 155).

Kneale & Kneale, 1962). According William
of Shyreswood, “meaning is the
representation [praesentatio] of an idea in the
mind. The suppositio is the co-ordination
[ordinatio] of the concept under another
concept” (Bocenski, 1956, p. 217); Petrus
Hispanus, too, in his Summulae logicales,
pointed out the difference between significatio
and suppositio (Geymonat, 1970, I, p. 549;
Bagni, 1997); and in his Summa Logicae (I,
63, 2) William of Ockham (1281-1349) stated
that the suppositio “is a property belonging
to a term, just because [it is included] in a
proposition” (Bocenski, 1956, p. 219).

Nevertheless we cannot completely develop
this interesting issue through reference to the
Logic of the Middle Ages. We shall introduce
the subject of our study through a theoretical
framework based upon some elements of
20th-century philosophical research: in section
2 we shall make reference to the paper On
denoting by Bertrand Russell (1872-1970),
published a century ago, together with its
historical connection to Meinong and Frege
(2.1); some positions of Wittgenstein’s (2.2),
Quine’s and Brandom’s (2.3) will allow us
to introduce Apel’s and Habermas’
approaches (2.4), which are to be
considered crucial for our work. Through
these we shall discuss (section 5)
experimental data (sections 3 and 4).

2.  Theoretical framework

2.1. Frege and Russell

Let us consider first some reflections on
“definite descriptions” (Penco, 2004, p. 54):
we shall compare some ideas put forward
by   Gottlob   Frege   (1848-1925)  and  by
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Russell. In order to introduce the problem,
it is recalled that since Aristotle we have
known that “through language we can
correctly refer to things that do not exist
[...] or to elements whose existence is
possible but that can hardly be proved” (Lo
Piparo, 2003, p. 165). It is moreover worth
mentioning the theoretical approach of
Alexius Meinong (1853-1920), who stated
that “objects of knowledge do not
necessarily exist” (Meinong, 1904, p. 27;
Orilia, 2002).

The Fregean approach is based upon the
Compositionality Principle (Frege, 1923, p.
36), according to which a statement
containing a term without denotation has
no truth value: for instance, a statement
referring to a non-existing person is neither
true nor false (Frege, 1892). On the
contrary, according to Russell, statements
containing definite descriptions (e.g. the
current President of the Italian Republic)
imply the existence of an individual (Mr.
Carlo Azeglio Ciampi) to whom the
considered property is referred (and this
individual is unique), at least at the time
when the sentence is stated (March 2006).
The problem is that some definite
descriptions (and names are definite
descriptions too) do not refer to existing
individuals: when we talk about Ares or the
father of Phobos and Deimos we are not
making reference to an existing individual.

In order to avoid ambiguity, in his article
entitled On denoting, published in Mind a
century ago, Russell suggested making the
logical form of a definite description explicit.
So, a proposition like The father of Phobos
and Deimos is the Greek god of war would
be There is one and only one individual of
whom it can be said: he is the father of
Phobos and Deimos, and he is the Greek
god of the war. Frege’s and Russell’s
approaches are very different. Let us
consider, for instance, the sentence The

King of France is bald: according to Frege
it is neither true nor false because the term
the king of France has no reference;
according to Russell it is false because we
can write it in the form: There is one and
only one king of France and he is bald
(Wittgenstein will make reference to a
similar position: Wittgenstein, 1969a, p.
173).

Many years after the publication of On
denoting, P.F. Strawson (1950) underlined
an important distinction between a
sentence and an utterance and this led us
to distinguish between denotation and
reference. Denotation links an expression
and what it denotes (taking into account
conventions and linguistic rules); reference
links an expression and the object to which
the speaker wants to make reference
(Bonomi, 1973; Penco, 2004, p. 84). With
The King of France is bald, Russell deals
only with denotation, while Frege considers
the speaker’s idea to make reference to a
non-existing object, so he concludes that
the sentence has no truth value, such a
reference being impossible. Of course if we
consider a different context, e.g. a legend
or a fiction where the king of France is
actually bald, we would have to revise our
position (it should be remembered that
according to Frege, words must be
considered only within a proposition: for
instance, Phobos and Deimos could
indicate either the sons of Ares and
Aphrodite or the satellites of Mars; see:
Frege, 1923).

2.2. Wittgenstein: from “Tractatus” to
“Philosophical Investigations”

The position of Russell’s most important
pupil, Ludwig Wittgenstein (1889-1951), is
rather complex because it must be divided
into two very different periods. In his
Tractatus logico-philosophicus (published
in 1921 with a preface by Russell himself)
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Wittgenstein reprises (sometimes critically)
and develops some ideas of Frege’s and
of Russell’s: while Frege considers natural
language as unavoidably imperfect,
Russell wants to point out its logical form
(Russell, 1910) and Wittgenstein states
that “in fact, all the propositions of our
everyday language, just as they stand, are
in perfect logical order” (Wittgenstein,
1922, §  5.5563; but Wittgenstein’s position
expressed in his Tractatus, reveals some
tension; see: Marconi, 2000a, p. 54); so if
our language “looks ambiguous, we must
recognise that its essence or its true logical
form are hidden” (Penco, 2004, p. 60).

The so-called second Wittgenstein
proposed a very different approach (his
Philosophical Investigations were
published in 1953, two years after the
philosopher’s death): the meanings of
words must be identified in their uses within
a context. The concept of ‘language-
game» is fundamental: it is a context of
actions and words in which an expression
assumes its meaning; so a language game
is both a tool for the study of the language
and the “starting point” where “we can
reflect on the language by describing the
differences and similarities of language
games, instead of looking for its essence,
as done in the Tractatus” (Penco, 2004, p.
105; concerning the continuity between the
first and the second Wittgenstein, see:
Marconi, 2000b, pp. 95-101). In addition,
Hilary Putnam developed this approach
and concluded that the meaning of a word
is to be found in (and in some ways
distributed among) the community of
speakers (Putnam, 1992).

Let us now examine a remark by
Habermas (that we shall reprise later):
through his descriptive approach to the use
of language, Wittgenstein levels its
cognitive dimension; as soon as the truth
conditions that we must know in order to

employ propositions correctly are derived
just from linguistic praxis to which we are
used, the difference between validity and
social value vanishes (Habermas, 1999, p.
80): this suggests a revision of the concepts
of ‘validity’ and ‘truth’. Of course Habermas’
position must be considered critical: he
underlines that the justification cannot be
based upon life, but rather must be related
to fundability (Habermas, 1983, p. 80). We
shall reprise this point later.

2.3. Some ideas by Quine and Brandom

Willard Van Orman Quine (1908-2000) makes
reference to the modality de dicto and de re
(Quine, 1960; Kneale, 1962): “a de re belief
is a belief expressed by the speaker about
some properties of a certain object in the
world; a de dicto belief is a belief expressed
by the speaker about a proposition” (Penco,
2004, p. 161; interesting historical references
can be found in: von Wright, 1951, pp. 25-28
and Prior, 1955, pp. 209-215). For instance,
the proposition John believes that Ares is the
Greek god of war, referring to a de dicto belief,
cannot be replaced by John believes that the
father of Phobos and Deimos is the Greek
god of war: as a matter of fact we cannot be
sure that John knows that Ares is the father
of Phobos and Deimos. On the contrary, the
proposition about Ares John believes he is
the Greek god of war, referring to a de re
belief, can be replaced by concerning the
father of Phobos and Deimos, John believes
he is the Greek god of war, where the speaker
characterised Ares through a personal
description, even if John does not know it.
Some similar situations have been studied
by Frege (see for instance: Frege, 1892;
Origgi, 2000, pp. 110-123) and we shall
reprise them in order to discuss our
experimental data.

Brandom tries to revise some of
Wittgenstein’s ideas and proposes
replacing  his  language   games  with  his
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‘game of giving and asking for reasons’
(Brandom, 1994 and 2000). Although
Brandom’s conception of language has been
considered restrictive (it does not consider
aspects like calling, ordering etc.), his
approach will be relevant to our research (see
moreover: Habermas, 1999, pp. 102 and
140).

2.4. Apel and Habermas

According to Karl-Otto Apel (1987), every
speaker implicitly makes reference to norms
for meaningful and intelligible discourse, truth
(romantic correspondence between
sentence and reality), veracity (correct
expression of the speaker’s state) and
normative correctness (respect of community
rules). As a consequence we are able to
acquire the conditions for ‘ideal’
communication, which assumes the role of
normative principle: the discussion’s
impartiality and the possibility to reach some
agreement among the bargaining parties
depend on those conditions (see moreover
the “rational” discussion as introduced in
Lakoff & Johnson, 1980, p. 111, and the
“conversation”, p. 102).

According to Habermas, the rationality of
judgements does not imply their truth, but
only their justified acceptability in a particular
context (Habermas, 1999, p. 102). Jürgen
Habermas distinguishes between the truth
of a statement and its rational affirmability
(Habermas, 1999, p. 11) and reprises Apel’s
ideas (criticised in Davidson, 1990) in order
to highlight the fundamental possibility of an
‘ideal’ communication: he underlines the
importance of the inclusion in a universal

world of well-ordered interpersonal relations,
and the crucial element in order to do that is
the rigorous condition of communication
(Habermas, 1999, p. 279).

Intersubjective validity does not derive only
from a convergence that can be observed
with reference to the ideas of different
individuals: Habermas refers epistemic
authority to a community of practice and not
only to individual experience (Habermas,
1999, pp. 136 and 238). The structure of the
discourse creates a connection between the
structures of rationality itself. As a matter of
fact, it has three different roots, closely related
one to another: the predicative structure of
knowledge at an institutional level (Cassirer,
1958, III, p. 329), the teleological structure of
the action and the communicative structure
of the discourse (Habermas, 1999, p. 99).
These Habermasian considerations will be
very important in interpreting our
experimental data.

3.  Methodology

In this work, we are going to analyse the
discussion  of  a group of students aged 15-
16 years (5th class of a Ginnasio-Liceo
Classico, in Treviso, Italy) regarding a
question about the truth of two sentences in
some ways similar to The King of France is
bald (Russell, 1905)3.

During a lesson in the classroom, pupils were
divided into groups of three pupils each. The
division was at random. The researcher (who
was not the mathematics teacher of the pupils
but  who  was  however  present  in  the

    The Ginnasio-Liceo Classico is a school with high educational standards, in which pupils are asked to study many

classical subjects, in disciplines such as Italian Literature, Latin and Greek Literature, History and so on; the mathematical

curriculum is based upon elementary Algebra and Euclidean Geometry, and some basic elements of Logic are included

(in particular, pupils knew the notion of proposition as a ‘statement that can assume one and only one truth value, true or

false’: for instance, sentences including predicates related to subjective evaluations cannot be considered propositions).

3
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classroom with the teacher and the pupils)
proposed two sentences to the pupils and
invited all the groups to decide if the given
sentences were true or false. In particular,
we are going to focus on the discussion that
occurred in one of the groups.

The question was proposed while taking into
account the importance of avoiding the
suggestion of a strict dilemma (‘true or
false?’), forcing the students to give a specific
answer. As we shall see, the first sentence
(The King of the inhabitants of the Moon is
bald) makes reference to Russell’s
aforementioned example; after some
minutes,   the  second  sentence (1/0+1/0+1
is odd) was added, in order to see the effect
of asking such kinds of questions in
sentences expressed in algebraic language4.

4.  Experimental data

The researcher writes the first sentence on
the blackboard. The second sentence will be
added after ten minutes:

For each sentence say: Is it a true sentence?
Is it a false sentence?

(1)   The King of the inhabitants of the Moon
is bald (2)   …

Discuss your answer in the group and write
it on a sheet of paper.

Here is the (translated) transcription of the
conversation that took place in the group
formed by A., B., C.

4.1. Transcription

• [01] A.: (smiles) What is it?

• [02] B.: (in a low voice) The King of the

4     Of course, a full evaluation of this important aspect ought to be based upon particular and detailed research.

inhabitants of the Moon is bald.

• [03] A.: The King of the inhabitants of
the Moon, what does that mean?

• [04] C.: Well, I say, the Moon is
something with no hair, if we consider
the sun and its beams…

• [05] B.: (ironically) But what are you
talking about?

• [06] C.: No, no, I am joking, there are no
inhabitants on the Moon. If they existed,
I would be able to state something.

• [07] B.: (looks around) But what does it
mean, true or false?

• [08] A.: I do not know who the inhabitants
of the Moon are, and then, come on,
there are no inhabitants on the Moon
and so there is not a king.

• [09] B.: Then it is false.

• [10] C.: It’s not as easy as it seems, in
my opinion there is something unclear.
They are playing with words and so we
don’t understand. Let’s read carefully.
There is not a king, and the inhabitants,
what does it mean? On the Moon there
is nobody, hence the king of the Moon
is the Moon itself.

• [11] A.: Perhaps there are some micro-
organisms, something that we cannot
see, entities different from us.

• [12] C.: (gesticulating) Or think, perhaps
someone saw an astronaut with his
helmet, so that he looks bald and when
he talks about it, so perhaps it is true.

• [13] A.: (sure) No, it is not relevant, it
says the inhabitants of the Moon, it
doesn’t say the Moon or the king of the
Moon is false, I mean bald. We must see
the inhabitants and then the king.

• [14] B.: Well, in this case it’s false, there
are no inhabitants, no king, hence of
course he’s not bald.
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• [15] A.: Watch  out,  perhaps  there’s a
trap, as he says (C.), perhaps the
exercise cannot be done.

• [16] B.: I’ll divide this sentence up: when
I say that the king of the inhabitants
does not exist, full stop, it is false, and
what follows is also false. If I say, later,
that he is bald or not, this is not
important, do you understand?

• [17] A.: (doubtful) So let’s say that the
sentence… would be false.

• [18] C.: Yes, the simplest thing to do is
to answer that it’s false. But if the
question deals with a film or a tale with
a king of the Moon that is bald, in that
tale it’s true.

• [19] A.: Just  a  moment,  it’s  better to
emphasize the king of the Moon, in our
answer. The king is false. If we want to
say that the whole sentence is false we
must be able to see the king, with his
hair and …

• [20] B.: (interrupting) No, it’s impossible
to see him, he doesn’t exist. (To C.) It’s
no tale, otherwise they would have told
us. So it’s false.

• [21] A.: (after a while) In short, one thing
is to say that a sentence is false, I say
that something is not true and so there
is something wrong in the sentence.
Another thing is to talk about someone
and then say he is, for instance, bald
or not; when I talk about a person, I
suppose he exists.

• [22] B.: No, wait, but in your opinion is it
enough to say something about
someone who doesn’t exist in order to
make him real? If he doesn’t exist, he’s
false.

• [23] A.: He  is  not  false,  the king; the
problem is whether it’s false that he is
bald. Let’s think carefully, before
answering. It seems false, but perhaps
it’s not so.

• [24] B.: Listen, think about the question
as a whole, they say the king is bald, it
can be false because the king is not bald
or because there is no king at all. If we
want it to be true we must have the king
and he must be bald.

• [25] C.: (looking at A., a bit impatient)
Come on, it’s clearly false! You make
us wrong, if you say that it’s not false,
then it is true, and what do you mean?
Do you mean that the inhabitants of the
Moon are bald?

• [26] A.: Eh, it’s not true, it’s obvious.
However it is not easy to understand.
(Looking at B.) No, you are right, let’s
write false, I agree.

Now the Researcher completes the task on
the blackboard:

For each sentence say: Is it a true
sentence? Is it a false sentence?

(1)  The King of the inhabitants of the Moon
is bald   (2)  1/0+1/0+1 is odd

Discuss your answer in the group and write
it on a sheet of paper.

• [27] B.: Yes, it’s like before. False.

• [28] A.: (doubtful) Just a moment… if
we say false, it’s even. Maybe this
exercise is impossible.

• [29] B.:  No, why do you think even? It’s
different. Here it’s odd, we must look at
this sentence.

• [30] A.: Watch out, it’s not like the first
sentence. And what about if they had
said even?

• [31] B.: False. It would be false, 1/0 is
not a number.

• [32] C.: 1/0 means infinity.

• [33] B.: No, the teacher told us it isn’t
true, 1/0 is impossible.
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• [34] C.:  It’s  not  infinity  but  it’s  a very
very big number. How can I say if it’s
odd or even?

• [35] B.: No, no, it’s not a number, it would
be very big but actually it doesn’t exist.

• [36] A.: Come on, there is a trick: they
make you think it’s odd because it’s like
2+2+1 that would be 5, but the starting
number doesn’t exist. It’s false, once
again.

4.2. Interaction flow chart

In the following flow chart (Sfard & Kieran,
2001; Ryve, 2004) different arrow directions
are used to distinguish proactive and
reactive utterances. In the case considered,
the essential connection with everyday
language prompted us to avoid the
distinction    between   object-level  and
non-object-level utterances.

In the next section we are going to analyse our experimental data (transcriptions and
flow chart) on the basis of our framework.
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5.  Discussion

5.1. First sentence

In [03] A. proposes the problem of
reference and in [04] C. seems to suggest
the possibility of an unusual interpretation
of ‘bald’ (“the Moon is something with no
hair, if we consider the sun and its
beams…”). However the student himself,
turns back in [06] to a more usual meaning
(“No, no, I am joking, there are no
inhabitants on the Moon”). A.’s next
utterance, [08], can be connected to the
Compositionality Principle: “Come on,
there are no inhabitants on the Moon and
so there is not a king”.

C.’s utterance [10] is interesting: “they are
playing with words and so we don’t
understand. Let’s read carefully. There is
not a king, and the inhabitants; what does
it mean? On the Moon there is nobody,
hence the king of the Moon is the Moon
itself”. He does not recognise the “perfect
logical order” of common language
(Wittgenstein, 1922, p. 5.5563): as well as
‘referential opacity’ (Quine, 1960), he
considers the semantic aspect and
proposes an unusual suppositio (if “on the
Moon there is nobody”, we could say that
“the king of the Moon is the Moon itself”).

C.’s next utterance [12] is also interesting
(“Or think, perhaps someone saw an
astronaut with his helmet, so that he looks
bald and when he talks about it, so perhaps
it is true”): the communication function of
the language is explicitly considered
(Dummett, 1993, p. 166; see moreover:
Habermas, 1999, p. 105) and this is the one
point in which falsehood, although in de dicto
modality, does not refer only to the problem
of existence. A’s utterance [13] (“no, it is not
relevant, it says the inhabitants of the Moon,
it doesn’t say the Moon or the king of the

Moon is false, I mean bald. We must see
the inhabitants and then the king”) is not
completely clear, but brings the discussion
back to the main question.

Now we can consider the direct comparison
of B.’s ideas with A.’s. In [14] B. says: “well,
in this case it’s false, there are no
inhabitants, no king, hence of course he’s
not bald”. A.’s utterance [15] expresses
some doubts (“perhaps the exercise cannot
be done”): he seems to choose a ‘Fregean’
approach, and a conclusion avoiding the
assignment of a truth value, but in [16] B.
expresses his viewpoint further: “I’ll divide
this sentence up: when I say that the king
of the inhabitants does not exist, full stop: it
is false, and also what follows is false. If I
say, later, that he is bald or not, this is not
important, do you understand?” The
Compositionality Principle is once again
followed, but B. seems to consider a
‘Russellean’ denotation. A.’s utterance [17]
(“so let’s say that the sentence… would be
false”) does not show conviction.

C.’s utterance [18] refers to the importance
of the context (see moreover the
suppositio): now the connection between an
expression’s meaning and its use in a
context is clear: “but if the question deals
with a film or a tale with a king of the Moon
that is bald, in that tale it’s true”.

In [19] A. declares his willingness to
accept the falsehood of the sentence
considered, but underlines that it mainly
refers to the existence of the king of the
Moon: “just a moment, it ’s better to
emphasize the king of the Moon, in our
answer. The king is false”. This point is
interesting: like in [17], A. shows a positive
frame of mind with reference to B.’s
position, but according to him “if we want
to say that the whole sentence is false we
must be able to see the king, with his hair
and …”.
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After B.’s reply [20], taking into account C.’s
objections too (“It’s no tale, otherwise they
would have told us”) and after a while, in
[21] A. says: “One thing is to say that a
sentence is false. I say that something is
not true and so there is something wrong
in the sentence. Another thing is to talk
about someone and then say he is, for
instance, bald or not; when I talk about a
person I suppose he exists.” So A. seems
to propose a distinction between a de dicto
modality and a de re modality: the pupil
would distinguish a statement like I say that
the king of the Moon is bald and a
statement like I say about the king of the
Moon that he is bald (Penco, 2004, p. 191).
The second expression, in A.’s opinion,
would be divided up in the following way: I
am talking about the king of the Moon and
(later) I say he is bald: so the expressions
examined would bind the speaker.

As we can see from the flow-chart, a direct
comparison between A. and B. now resumes
([21]-[24]): B.’s reply [22] is interesting (“but
in your opinion is it enough to say something
about someone who doesn’t exist in order to
make him real?” This brings to mind
Meinong’s position according to which
“objects of knowledge do not necessarily
exist”: Meinong, 1904, p. 27). Nevertheless,
A. is not completely persuaded and certainly,
in this ‘ game of giving and asking for
reasons’: he acknowledges in [23] the
plausibility of B.’s conclusions (“it seems
false, but perhaps it’s not so”) but at the same
time confirms his ‘Fregean’ approach (“he is
not false, the king; the problem is whether
it’s false that he is bald”). However, the first
part of the discussion is about to finish: as a
matter of fact, in [24] B. states once again
his ‘Russellean’ viewpoint: “listen, think about
the question as a whole, they say the king is
bald, it can be false because the king is not
bald, or because there is no king at all. If we
want it to be true we must have the king and
he must be bald”.

While [14], [16] and [22] did not completely
persuade A., this utterance is crucial and
conclusive (C.’s utterance [25], “come on,
it’s clearly false” can be compared with a
well-known note of Wittgenstein’s: “all I
should further say as a final argument
against someone who did not want to go
that way, would be: ‘Why, don’t you see…!’
– and that is no argument”: Wittgenstein,
1956, I,§ 34). In [26], after pointing out the
lack of clarity in the expression examined
(“Eh, it’s not true, it’s obvious, however it is
not easy to understand”: and A. makes
reference to a ‘non-truth’, perhaps in order
to underline its difference from a
‘falsehood’) A. accepts B.’s conclusions.

With reference to Apel’s perspective, A.’s
doubts do not seem to be related to
comprehension of the meaning of the
discourse: its ‘truth’ (correspondence
between sentence and reality) is connected
with or perhaps set against its normative
correctness (respect of community rules),
mainly if we consider the features of a
critical analysis of the sentence itself, of the
“definite descriptions” (Penco, 2004, p. 54)
that we find in it and of the coordination of
its parts ([24]: “it can be false because the
king is not bald, or because there is no king
at all”). If we keep in mind the distinction
between the truth of a statement and its
rational affirmability (Habermas, 1999, p.
11) and if we interpret ‘correctness’ as
acceptability according to rigorous
conditions of communication (Habermas,
1999, p. 279), we can say that A. is induced
to accept the correctness of the shared final
choice thanks to the argument developed
by the group of students (in particular by
B.). We shall reprise these considerations
in the final section of our work.

5.2. Second sentence

B.’s role is now sure and, as shown by the
flow-chart, the discussion about the second
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sentence can be divided into two moments:
a first debate between A. and B. ([27]-[31])
and a second debate between C. and B.
([32]-[35]). In both these moments, B.
expresses his positions properly, taking into
account the results of the previous
discussions about the first sentence (see
for instance the utterance [27]).

A.’s doubt [28] is interesting (the utterance
is similar to [15], but now it is based upon a
different argument). According to A., to say
that ‘1/0+1/0+1 is odd’ is false would
correspond to saying that ‘1/0+1/0+1 is
even’ is true: let us note that a similar
argument (to say that ‘The king of the
inhabitants of the Moon is bald’ is false
would correspond to saying that ‘The king
of the inhabitants of the Moon is hairy’ is
true) was not considered by A. in the
previous part of the discussion (only C.’s
utterance [25] can be connected to this
argument). Such a difference seems to be
related to the different contexts: the
mathematical one, with its particular
language and symbols, can suggest the
use of tertium non datur.

B.’s strong utterance [31] (“1/0 isn’t a
number”) is very important: the student
interprets the sentence 1/0+1/0+1 is odd as
1/0+1/0+1 is an odd number and, more
precisely, 1/0+1/0+1 is a number and this
number is odd. The first part of this
sentence is false (the analogy with B.’s
utterance [16] is clear: we have once again
a ‘Russellean’ denotation) so all the
sentence must be considered false.

The discussion between C. and B. deals
with the ‘nature’ of 1/0: in [32] C. states “1/
0 means infinity” and, because of B.’s
objection ([33]: “no, the teacher told us it
isn’t true, 1/0 is impossible”), in [34] C.
changes his mind and states that “it’s a very
very big number”, so “how can I say if it’s
odd or even?” However in [35] B. points

out: “no, no, it’s not a number, it would be
very big but actually it doesn’t exist” and
the discussion leads A. to accept B.’s
justified position explicitly ([36]: “the starting
number doesn’t exist. It’s false, once
again”).

It should be noted that the syntactic structure
n+n+1 to which the second sentence makes
reference can lead the students to consider
an odd number. This element is very relevant,
and in our opinion this is the crucial point with
reference to the role of algebraic language:
in the first sentence, the existence of the king
of the inhabitants of the Moon would have
no consequences about his hair, but now if
n is an integer, n+n+1 would really be an
odd number (in [36] A. says that “they make
you think it’s odd because it’s like 2+2+1
that would be 5, but the starting number
doesn’t exist”). But this factor did not
influence the students.

6.  Concluding remarks

Let us now turn back to the questions
proposed in the Introduction. Clearly
experimental data can lead us to state once
again that language is a very important
moment in which the meaning of an
expression is fixed; but clearly we must also
keep in mind that “language, like any other
semiotic system, functions inside a cultural
network of significations” (Radford, 2003a, p.
141). It is impossible to make reference to a
completely sure set of meanings and to a
single, absolute notion of truth (moreover,
relevant issues concern the connection
between the acquisition of a representation,
namely a linguistic one, with the full
conceptual acquisition of an object: D’Amore,
2001b; see moreover: Duval, 1998, D’Amore,
2001a, 2003a and 2003b).

The experience described brings to mind
a position held by Putnam (1992) according
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to which the meaning (and we are thinking
about a whole sentence, more than about
a single word) is to be found in the
community of the speakers and refers to
different ways of considering the sentence
(and, as we shall see, to the three “different
roots of rationality”: Habermas, 1999, p.
99). Rorty notices that a merely ‘subjective’
argument must be disregarded by the
reasonable partners of a conversation
(Rorty, 1979, p. 368): we realized that a
meaning has been built by collective
negotiation, a real ‘game of giving and
asking for reasons’ (Brandom, 2000); but
in our opinion it is trivial to conclude that
both arguments by B. and by A. are
plausible (Strawson, 1950). As a matter of
fact, this plausibility of both positions and
their evolution lead us to posit: is it correct
to propose a similar ‘truth evaluation’?

Of course both sentences were ambiguous,
while the choice true-false can be considered
only if the assigned sentence is a real
‘proposition’: but how can our pupils
recognise real ‘propositions’? The traditional
answer ‘a proposition is a statement that
assumes one and only one truth value’, in
this case, can be circular. Moreover, it is
important to realize that the ambiguity
considered is not connected to the structure
of   the  assigned  sentences  (for instance,
3/6+3/6+1 is odd is clearly a… perfect
proposition!).

The task considered is neither connected
only to an isolated epistemic rationality, nor
refers only to coherence (Rorty, 1979, p.
199; Williams, 1996, p. 267; certain and
coherent proofs can coexist with
“conceptual confusion”: Wittgenstein,
1953, pp.II-XIV) or analogy: the comparison
[27]-[31] demonstrates that the difference
in the contexts (the first sentence is
expressed in common language, the
second refers to a mathematical context)
does not authorize us to transfer the truth

value from the first to the second sentence
uncritically. Moreover, the term ‘false’ can
have different values in different contexts
(Lakoff & Johnson, 1980 p. 153).

So, should we doubt everything? This
question is misleading (“if you tried to doubt
everything you would not get as far as
doubting anything. The game of doubting
itself presupposes certainty”: Wittgenstein,
1969b, p. 115; from the logical viewpoint we
agree with Lolli, 2005,  p. 13-17).
Furthermore, a charge of a conventionalistic
reduction of the concept of truth would be
groundless (Andronico, 2000, p. 252);
Wittgenstein himself would reply: “‘So you are
saying that human agreement decides what
is true and what is false?’ – It is what human
beings say that is true and false; and they
agree in the language they use. That is not
agreement in opinions but in form of life”
(Wittgenstein, 1953, p. 241).

As noted in 2.4, this position has been
elaborated by some authors. It is important
to consider our traditional notions of ‘truth’
and ‘validity’: knowledge’s objectivity
criterion is founded on public praxis instead
of private certainty, so ‘truth’ becomes a
‘three members’ concept of validity
(Habermas, 1999, p. 239), a validity
justif ied with reference to a public
(Schnädelbach, 1992).

The discussion of our experimental data
does not allow us to conclude only that
working together (in groups) is useful: such
a conclusion would be induced by our
opting to propose the exercise to some
groups of pupils. The final common
decision of the students was achieved after
an active discussion, and had some
consequences (Habermas, 1999, p. 137;
in our case, for instance, the group must
declare its decision to the Researcher, to
the Teacher and to other students); so we
must  surpass  the  sphere  of  propositions
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(and texts) and take into account the
sphere of actions, e.g. in using a predicate
(as noticed by Kambartel, 1996, p. 249).
With regard to the students’ behavior, the
discussion (in the perspective of a decision
to be taken) seems to interpret the
mentioned position and to develop the
different roots of rationality (Habermas,
1999, p. 99). Of course the debate, under
the explicit influence of the text of the
assigned exercise, is still far from the ‘ideal’
communication described by Habermas
and by Apel (C.’s role, for instance, is often
minor, although his utterances related to
the suppositio are really interesting); in
other groups of students, the discussion
developed without a final agreement
(Lakoff & Johnson, 1980); nevertheless our
experimental data (in particular utterances
[19], [21]-[24], [28]-[31] and [32]-[35], too)
enables us to state that the discussion did
not lead the pupils only to a convergence
of different ideas, but to a real change of
viewpoint (see Habermas, 1999, p. 238 e
254). This fundamental moment can be
highlighted in the utterances [24] and [35].

We would like to make a final reflection:
we provided out students with a stimulating
question about the truth (and the
falsehood) of some sentences in different
contexts, and this is quite a traditional
exercise; but how can we speak about
‘truth’ with any certainty? Rorty asks himself
if the truth of a sentence can really be
considered as independent from the
context of the justification (Rorty, 1994) and
our experience seems to bear out his
doubt: the behavior of some students did
change after the passage from a non-
mathematical context to a mathematical
one; for instance, in [28]-[30] and in [36]
the influence of algebraic syntax is clear
(A.: “they make you think it’s odd because
it’s like 2+2+1 that would be 5, but the
starting number doesn’t exist”; let us
remember that the mathematical

curriculum of the Italian Ginnasio-Liceo
Classico includes several chapters
devoted to algebraic syntax; nevertheless,
as previously noted, algebraic language’s
general role in pupils’ behavior should be
investigated more deeply).

Reflection on these issues is important
(Lakoff & Johnson, 1980, p. 197-222): a
distinction between ‘validation’ (Geltung) and
‘validity’ (Gültigkeit) is fundamental and can
lead us to weaken the traditional distinction
between the ‘validation’ of a statement that
is approved and the ‘validity’ of a statement
that deserves intersubjective
acknowledgment because it is true
(Habermas, 1999, p. 277). If we accept that
a truth predicate can be considered (also) in
the language game of the argumentation, we
can point out its importance (also) with
reference to its functions in this language
game and hence in the pragmatic dimension
of a particular use of the predicate
(Habermas, 1999, p. 246) and we must take
into account some important consequences.
Truth itself must be related to a particular
culture (to a particular language system):
probably students belonging to different
cultures would express their arguments in a
different way (as previously noted, in Italy,
the Ginnasio-Liceo Classico is considered a
school with high educational standards).
Truth is relative to comprehension, so there
are no points of view allowing us to obtain
‘absolutely objective truth’ (Lakoff & Johnson,
1980, p. 236 and 283).

Thus, the intercultural aspect must be
considered and this point is expressed in
Wittgenstein too: “if anyone believes that
certain concepts are absolutely the correct
ones, and that having different ones would
mean not realizing something that we realize
– then let him imagine certain very general
facts of nature to be different from what we
are used to, and the formation of concepts
different from the usual ones  will become
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intelligible to him” (Wittgenstein, 1953,§ II-
XII). This point of view has been examined
by M. Messeri, who concludes: “so there
is something intrinsically misleading in
ethnocentric behavior according to which
different cultures are incomplete, rough and
unsatisfactory” (Messeri, 2000, p. 190).
Moreover, some influences of didactical
contract can be considered: probably

students’ arguments would be different if used
outside the school, in a different context. So,
does the predicate of truth have different
uses? Is ‘school rationality’ different from
‘everyday rationality’? What are the
consequences in the educational sphere?
Further research can be devoted to
examining these important points more
deeply.
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Semiosis as a

Multimodal Process

Ferdinando Arzarello 1

RESUMEN

Las aproximaciones semióticas clásicas resultan ser muy estrechas para investigar los
fenómenos didácticos del salón de clase de matemáticas. Además de los recursos semióticos
estándares utilizados por los alumnos y los maestros (como los símbolos escritos y el lenguaje
hablado), otros recursos semióticos importantes son los gestos, las miradas, los dibujos y
los modos extra-lingüísticos de expresión. Sin embargo, estos últimos caben difícilmente en
las definiciones clásicas de los sistemas semióticos. Para superar esta dificultad, en este
artículo adopto una perspectiva vygotskiana y presento una noción extendida de sistema
semiótico, el haz semiótico, que se revela particularmente útil para incluir todas los recursos
semióticos que encontramos en los procesos de aprendizaje de las matemáticas. En este
artículo subrayo algunos puntos críticos en la descripción usual de los sistemas semióticos;
discuto acerca del paradigma multimodal y encarnado que ha venido emergiendo en los
últimos años en investigaciones realizadas en psicolinguística y neurociencia y analizo los
gestos desde un punto de vista semiótico. Luego, introduzco la noción de paquete semiótico
y lo ejemplifico a través de un estudio de casos.

PALABRAS CLAVES:  Recursos  semióticos,  encarnamiento, multimodalidad,
gestos, inscripciones.

ABSTRACT

Classical semiotic approaches are too narrow to investigate the didactical phenomena
in the mathematics classroom. In addition to the standard semiotic resources used by
students and teachers (e.g. written symbols and speech), other important semiotic
ressources include also gestures, glances, drawings and extra-linguistic modes of
expressions. However, these semiotic ressurces fit with difficulties within the constraints
of the classical definitions of semiotic systems. To overcome such difficulties I adopt a
vygotskian approach and present an enlarged notion of semiotic system, the semiotic
bundle, which reveals particularly useful for framing all the semiotic resources we find in
the learning processes in mathematics. The paper stresses some critical points in the
usual description of the semiotic systems; it discusses the multimodal and embodied
paradigm, which is emerging in these last years from researches in psycholinguistics
and neuroscience and analyses gestures from a semiotic point of view. Then it introduces
the notion of semiotic bundle and exemplifies it through a case study.
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RESUMO

As aproximações clássicas semióticas resultam ser muito limitadas para  investigar os
fenômenos didáticos de sala de aula de matemática. Além aos recursos padrão dos
semióticos usados pelos estudantes e pelos professores (como os símbolos escritos e a
língua falada), outros recursos importantes dos semióticos são os gestos, os olhares, os
desenhos e as maneiras extra-lingüísticas da expressão. Não obstante, estes últimos
não se adaptam bem nas definições clássicas dos sistemas dos semióticos. A fim superar
esta dificuldade, neste artigo eu adoto um perspectiva vygotskiana e apresento uma
noção estendida do sistema do semiótico ao pacote semiótico que é particularmente útil
incluir todos os recursos dos semióticos que nós encontramos nos processos da
aprendizagem da matemática. Neste artigo eu enfatizo alguns pontos críticos na descrição
usual dos sistemas semióticos.Discuto sobre o paradigma multimodal e personificado
que tem emergido nos últimos anos das investigações feitas na psicolinguística e na
neurociência e analiso os gestos sob um ponto da vista do semiótico. Logo, eu introduzo
a noção do pacote do semiótico e a exemplifico com um estudo dos casos.

PALAVRAS CHAVE:  Recursos semióticos, significação, multimodalidade, gestos,
inscrições.

RÉSUMÉ

Les approches sémiotiques classiques sont trop étroites pour étudier les phénomènes
didactique de la salle de classe de mathématiques. En plus des ressources sémiotiques
traditionnelles (comme les symboles écrits et la langue) utilisées par les élèves et les
enseignants, d’autres ressources sémiotiques importantes comprennent les gestes, les
regards, les dessins et les modes extra-langagiers d’expression. Ces dernières rentrent
difficilement dans les définitions classiques des systèmes sémiotiques. Afin de surmonter
cette difficulté, dans cet article j’adopte une perspective vygotskienne et je présente une
notion élargie de système sémiotique, le faisceau sémiotique, qui s’avère particulièrement
utile afin d’inclure toutes les ressources sémiotiques que nous rencontrons dans les
processus d’apprentissage des mathématiques. Dans cet article je souligne quelques
points critiques concernant la description usuelle des systèmes sémiotiques; j’offre une
discussion du paradigme multimodal et incarné lequel a émergé ces dernières années
dans le cadre des recherches menées en psycholinguistique et neuroscience. Suite à
cela j’analyse les gestes d’un point de vue sémiotique. Après j’introduis la notion de
paquet sémiotique et l’exemplifie à travers une étude de cas.

MOTS CLÉS:   Ressources   sémiotiques,   incarnement,   multimodalité,  gestes,
inscriptions.
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Introduction.

Semiotics is a powerful tool for interpreting
didactical phenomena. As Paul Ernest
points out,

“Beyond the traditional psychological
concentration on mental structures
and functions ‘inside’ an individual it
considers the personal appropriation
of signs by persons within their social
contexts of learning and signing.
Beyond behavioural performance this
viewpoint also concerns patterns of
sign use and production, including
individual creativity in sign use, and
the underlying social rules, meanings
and contexts of sign use as
internalized and deployed by
individuals. Thus a semiotic approach
draws together the individual and
social dimensions of mathematical
activity  as well as the private and
public dimensions. These
dichotomous pairs of ideas are
understood as mutually dependent
and constitutive aspects of the
teaching and learning of mathematics,
rather than as standing in relations of
mutual exclusion and opposition.”
(Ernest, 2006, p.68)

However, the classical semiotic approach
places strong limitations upon the structure
of the semiotic systems it considers. They
generally result in being too narrow for
interpreting the complexity of didactical
phenomena in the classroom. As we shall
discuss below, this happens for two
reasons:

(i)  As observed by L. Radford (2002),
there are a variety of semiotic
resources used by students and
teachers, like gestures, glances,
drawings and extra-linguistic modes

of expression, which do not satisfy
the requirements of the classical
definitions for semiotic systems as
discussed in literature (e.g. see
Duval, 2001).

(ii) The  way  in  which  such different
registers are activated is
multimodal. It is necessary to
carefully study the relationships
within and between registers, which
are active at the same moment and
their dynamics developing in time.
This study can only partially be done
using the classic tools of semiotic
analysis.

To overcome these two difficulties, I adopt
a Vygotskian approach for analyzing
semiotic resources and present an
enlarged notion of semiotic system, which
I have called semiotic bundle. It
encompasses all the classical semiotic
registers as particular cases. Hence, it
does not contradict the semiotic analysis
developed using such tools but allows us
to get new results and to frame the old ones
within a unitary picture.

This paper is divided into three main
chapters. Chapter 1 summarizes some
salient aspects of (classical) Semiotics: it
shows its importance for describing
learning processes in mathematics (§ 1.1),
points out two opposite tendencies in the
story of Semiotics, which reveal the
inadequacy of the classical approach when
it is used in the classroom (§1.2), and
discusses the semiotic role of artefacts,
integrating different perspectives from
Vygotsky to Rabardel (§1.3).

Chapter 2 develops the new concept of
semiotic bundle (§2.1), discusses the
multimodal and embodied paradigm, which
has emerged in recent years from research
in psycholinguistics and neuroscience
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(§2.2), and analyses gestures from a
semiotic point of view (§2.3).

Chapter 3 introduces a case study, which
concretely illustrates the use of semiotic
bundles in interpreting the didactical
phenomena.

A Conclusion, with some comments and
open problems, ends the paper.

1. The semiotic systems: a critical
approach

1.1 Semiotics and mathematics

Charles S. Peirce points out a peculiar
feature of mathematics which distinguishes
it from other scientific disciplines:

“It has long been a puzzle how it
could be that, on the one hand,
mathematics is purely deductive in
its nature, and draws its conclusions
apodictically, while on the other
hand, it presents as rich and
apparently unending a series of
surprising discoveries as any
observational science. Various have
been the attempts to solve the
paradox by breaking down one or
other of these assertions, but without
success. The truth, however,
appears to be that all deductive
reasoning, even simple syllogism,
involves an element of observation;
namely, deduction consists in
constructing an icon or diagram, the
relations of whose parts shall
present a complete analogy with
those of the parts of the object of

reasoning, of experimenting upon
this image in the imagination, and of
observing the result so as to discover
unnoticed and hidden relations
among the parts. ... As for algebra,
the very idea of the art is that it
presents formulae, which can be
manipulated and that by observing
the effects of such manipulation we
find properties not to be otherwise
discerned. In such manipulation, we
are guided by previous discoveries,
which are embodied in general
formulae. These are patterns, which
we have the right to imitate in our
procedure, and are the icons par
excellence of algebra”.
(Hartshorne & Weiss, 1933, 3.363;
quoted in Dörfler, n.d.).

In fact, mathematical activities can develop
only through a plurality of palpable
registers that refer to its ideal objects:

“...the oral  register, the trace
register  (which includes all graphic
stuff and writing products), the
gesture  register, and lastly the
register of what we can call the
generic materiality , for lack of a
better word, namely the register
where those ostensive objects that
do not belong to any of the registers
above reside” (2).

(Bosch & Chevallard, 1999, p. 96,
emphasis in the original)

These observations are the root of all
semiotic approaches to mathematical
thinking, some of which I shall briefly
review below.

2      “...[le]  registre  de  l’oralité,  registre  de   la   trace  (qui  inclut  graphismes  et  écritures),  registre de la gestualité, enfin

registre de ce que nous nommerons, faute de mieux, la matérialité quelconque, où prendront place ces objets ostensifs

qui ne relèvent d’aucun des registres précédemment énumérés. ”
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Peirce’s observations point out different
aspects of the semiotic approach:

(i) the introduction of signs, namely
perceivable (spatio-temporal) entities, like
“icons or diagrams, the relations of whose
parts shall present a complete analogy with
those of the parts of the object of
reasoning”;

(ii) the manipulation of signs, namely
“experimenting upon this image in the
imagination” and/or “manipulating it”
concretely and “observing the effects of
such manipulation”;

(iii) the emergence of rules and of strategies
of manipulation: “in such activities we are
guided by previous discoveries, which are
embodied in the signs themselves”, e.g. in
the general formulae of algebra, and “that
become patterns to imitate in our procedure”.
Typical examples are the signs of Algebra
and of Calculus, Cartesian graphs, arrow
diagrams in Graph Theory or Category
Theory, but also 2D figures or 3D models
in Geometry. Generally speaking, such
signs are “kind[s] of inscriptions of some
permanence in any kind of medium (paper,
sand, screen, etc)” (Dörfler, n.d.) that allow/
support what has been sometimes called
(e.g. Dörfler, ibid.) diagrammatic reasoning.
The paper of Dörfler provides some
examples, concerning Arithmetic, Algebra,
Calculus and Geometry. Other examples,
albeit with different terminology, are in
Duval (2002, 2006).

However, as the quotation from Peirce
shows, the semiotic activities are not
necessarily limited to the treatment of
inscriptions since they also deal with
images that are acted upon in imagination
(whatever it may mean): “A sign is in a
conjoint relation to the thing denoted and
to the mind. If this relation is not of a
degenerate species, the sign is related to

its object only in consequence of a mental
association, and depends upon a habit.”
(Hartshorne & Weiss, 1933, 3.360).

I shall discuss this point below after having
considered the more standard approaches
to semiotic systems, which study
inscriptions (signs in a more or less wide
sense) and operations upon them. E.g.,
according to Ernest (2006, pp. 69-70), a
semiotic system consists of three
components:

1.   A set of signs, the tokens of which might
possibly be uttered, spoken, written,
drawn or encoded electronically.

2.  A set of rules of sign production and
transformation, including the potential
capacity for creativity in producing both
atomic (single) and molecular
(compound) signs.

3.    A set of relationships between the signs
and their meanings embodied in an
underlying meaning structure.

An essential feature of a semiotic system
has been pointed out by Duval (2002), who
introduced the concept of semiotic
representations. The signs, relationships and
rules of production and transformation are
semiotic representations insofar as they bear
an intentional character (this is also evident
in the quotation of Peirce).  This intentional
character is not intrinsic to the sign, but
concerns people who are producing or using
it. For example, a footprint in the sand
generally is not a semiotic representation in
this sense: a person who is walking on the
beach has no interest in producing or not
producing it; however, the footprint that
Robinson Crusoe saw one day was the sign
of an unsuspected inhabitant of the deserted
island, hence he gave it a semiotic function
and for him the footprint became a semiotic
representation.
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Other important aspects of semiotic
systems are their semiotic functions, which
can be distinguished as transformational or
symbolic (see: Duval, 2002 and 2006;
Arzarello et al., 1994).

The transformational function consists in
the possibility of transforming signs within
a fixed system or from one system to
another, according to precise rules
(algorithms). For example, one can
transform the sign x(x+1) into (x2 + x) within
the algebraic system (register) or into the
graph of a parabola from the Algebraic to
the Cartesian system. Duval (2002, 2006)
calls treatment the first type of
transformation and the second one
conversion. According to Duval (2002),
conversions are crucial in mathematical
activities:

“The characteristic feature of
mathematical activity is the
simultaneous mobilization of at least
two registers of representation, or
the possibility of changing at any
moment from one register to
another.”

The symbolic function refers to the
possibility of interpreting a sign within a
register, possibly in different ways, but
without any material treatment or
conversion on it. E.g. if one asks if the
number n(n+1) is odd or even one must
interpret n and (n+1) with respect to their
oddity and see that one of the two is always
even. This is achieved without any
transformation on the written signs, but
rather by interpreting differently the signs
n, (n+1) and their mutual relationships: the
first time as odd-even numbers and then
as even-odd numbers. The symbolic
function of signs has been described by
different authors using different words and
from different perspectives: C.S. Peirce,
C.K.Ogden & I. A. Richards (semiotics); G.

Frege (logic); L. Vygotsky (psychology) and
others: see Steinbring (2005, chapter 1)
for an interesting summary focusing on the
problem from the point of view of
mathematics education. The symbolic
function possibly corresponds to the
activity of “experimenting upon an image
in the imagination”, mentioned by Peirce.
All of the aforementioned authors point out
the triadic nature of this function, namely
that it consists in a complex (semiotic)
relationship among three different
components (the so called semiotic
triangle), e.g. using Frege´s terminology,
among the Sense (Sinn), the Sign
(Zeichen) and the Meaning (Bedeutung).
Peirce spoke of “a triple relation between
the sign, its object and the mind”; Frege
(1969) was more cautious and avoided
putting forward in his analysis what he
called the third world, namely the
psychological side.

Semiotic systems provide an environment
for facing mathematics not only in its
structure as a scientific discipline but also
from the point of view of its learning, since
they allow us to seek the cognitive
functioning underlying the diversity of
mathematical processes. In fact,
approaching mathematical activities and
products as semiotic systems also allows
us to consider the cognitive and social
issues which concern didactical
phenomena, as illustrated by the quotation
of Ernest in the Introduction.

Transformational and symbolic functions
of signs are the core of mathematics and
they are very often intertwined. I shall
sketch here a couple of examples. An
interesting historical example, where both
transformational and symbolic functions of
semiotic registers are present is the
method of completing the square in solving
second order equations. This can be done
within the algebraic as well as the
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geometric register. Another important
example of the creative power of the
symbolic function is given by the novelty
of the Lebesgue integral (of a real function
f in an interval [a,b]) with respect to the
Riemann one. In the latter, one collects
data forming the approximating integral
sums subdividing the interval [a,b]  in
intervals      , each of length     less than
some      : the basic signs are the products
     , where      is some value of the function
f  in      (or  its  sup  or  inf  in  it)  and the
final sum  is made considering the
values i corresponding  to  all the intervals
    of the subdivision. In the former, the
subdivision is made considering, for each
value  l of  f,  the set        of  x’s  such that
f(x) = l: the basic  signs are  the   products
     , and the final sum        , is made

considering all the values l that the function
assumes while x varies in [a,b].

1.2 Two opposite tendencies

Within the main components of a semiotic
system (signs and operations on them),
there is a tension between two opposite
modalities, which is particularly evident
when a semiotic lens is used to analyse
didactical processes and not only
mathematical products. This tension is in
fact a by-product of the two contrasting
features of mathematics pointed out by
Peirce, that is, its apodictic and
observational aspects.

The first one consists in the strong
tendency to formalize in mathematics:

“The more important for the
mathematical practice is the
availability of a calculus which
operates on diagrams (function terms)
and permits to evaluate derivatives,
anti-derivatives and integrals
according to established
diagrammatic operation rules. … Here

l ∆ l ∑ l ∆l

∑ li δi

∆ i

liδ i

δi

δ
li

∆ i

∆ i

∆ l

again we find the striving for
manipulable diagrams which can be
taken to accurately reflect the related
non-diagrammatic structures and
processes.”   (Dörfler, n.d.)

Different crucial examples of this tendency
are: the algebraic language, which (Harper,
1987) introduced suitable formalism to
treat classes of arithmetic problems
(equations included); Cartesian geometry,
which allowed for the translation of the
geometric figural register into the algebraic
one; and arrow-diagrams in Category
Theory. All such new inscriptional entries
also allowed for new forms of reasoning
and solving problems and hence had a
strong epistemological and cognitive
impact. A culminating case in this tendency
toward formalization consists in the idea
of formal system, elaborated by Hilbert
(see Detlefsen, 1986).

The construction of a (formal) axiomatization
in the sense of Hilbert’s formalist program
can be considered another method of
translating into diagrams. Let us take, for
instance, an axiom system for the structure
of real numbers: it consists of formulas in a
precise formal language together with the
rules inference, e.g. first order predicate logic.
These can be viewed as diagrams in the
sense intended by Peirce. Proofs and
theorems are then obtained by manipulating
such diagrams and observing the outcomes
of the manipulations (the logical deductions).
One could therefore interpret (formal)
axiomatization as a kind of
diagrammatization (see Dörfler, n.d.).

Moreover, if one looks carefully at some
logical ideas in Mathematical Logic
developed at the turn of the twentieth
century, the tendency toward formalism
shows a further mathematical aspect of
semiotic conversions, namely the idea of
the interpretation of one theory into
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another. As an example, I call to mind the
second part of the book Foundation of
Geometry (Hilbert, 1962), where Hilbert
typically interprets geometrical objects and
statements into real numbers or into some
subfield of reals to build models where some
specific axiom of geometry does not hold. The
concept of interpretation is the logical and
mathematical counterpart of the idea of
conversion from one register to another. Its
roots are in the conversion/interpretation of
one model into another one: typically, the
interpretation of a model for hyperbolic
geometry within the Euclidean model, namely
the Klein disk and the Poincaré disk or half-
plain. The rationale behind such logical
approaches is that the relationships among
objects represented in different ways within
different registers can be shown better in one
register than in another, exactly because of
the specificity of the register, possibly
because of the symbolic function it promotes.
For instance, we can note the validity or less
of an axiom of geometry in the usual
Euclidean model (first register) or in a model
built using only a subfield of real numbers
(second register). A very recent area of
research that has developed in line with this
approach is the project of Reverse
Mathematics (Sympson, 1999), where
typically an important theorem T is proved
carefully within a formal system S using some
logical  hypothesis H. For example,  the
Heine-Borel theorem in Analysis using as
logical hypothesis a (weak) form of König
lemma. Reverse Mathematics then tries to
answer to the following ‘reverse’ question:
does it exist within S a proof of H using T as
hypothesis? Namely, one tries to prove the
equivalence between T and H within a
suitable system S, namely the equivalence
between sentences whose meaning is within

two different registers (e.g. the analysis and
the logical one).

The concept of interpretation has carefully
refined the transformational and symbolic
functions of mathematical signs during the
years, from the pioneering semantic
interpretations of geometrical models to the
elaborate formal theories studied in
Reverse Mathematics.

On the one hand, this approach has
enlarged the horizon of semiotic systems
from within mathematics (inner
enlargement): think of the different models
of reasoning induced by the Calculus
inscriptions with respect to those pertaining
to the algebraic ones, or to those induced
by the «reasoning by arrows» in Category
Theory. But on the other hand, it has also
narrowed the horizon within which
mathematical semiotic activities are
considered, limiting them to their strictly
formal aspects.

Unfortunately, this is not enough when
cognitive processes must be considered,
e.g. in the teaching-learning of
mathematics. In such a context, it is the
same notion of signs and of operations
upon them that needs to be considered
with a greater flexibility and within a wider
perspective. In the classroom, one
observes phenomena which can be
considered as signs that enter the semiotic
activities of students3 but which are not
signs as defined above and are not
processed through specific algorithms. For
example, observing students who solve
problems working in group, their gestures,
gazes and their body language in general
are also revealed as crucial semiotic

      Semiotic Activity is classically defined as any “communicative activity utilizing signs. This involves both sign ‘reception’

and comprehension via listening and reading, and sign production via speaking and writing or sketching.” The main

purpose of the paper is to widen this definition.

3
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resources. Namely, non-written signs and
non-algorithmic procedures must also be
taken into consideration within a semiotic
approach. Roughly speaking, it is the same
notion of sign and of operations upon them
that needs to be broadened. In fact, over
the years, many scholars have tried to
widen the classical formal horizon of
semiotic systems, also taking into
consideration less formal or non formal
components.

While formalism represents the first
tendency of the aforementioned tension in
Semiotics, these broadening instances
from outside mathematics constitute the
other tendency (outer enlargement). This
tendency can already be found in the
complex evolution of the sign definition in
Peirce and is also contained in some
pioneering observations by Vygotsky
concerning the relationships between
gestures and written signs, such as the
following:

“The gesture is the initial visual sign
that contains the child’s future
writing as an acorn contains a future
oak. Gestures, it has been correctly
said, are writing in air, and written
signs frequently are simply gestures
that have been fixed.” (Vygotsky,
1978, p. 107; see also: Vygotsky, L.
S. 1997, p. 133.).

This was also anticipated by Ludwig
Wittgenstein, who changed his mind about
the centrality of propositions in discourse
and the role of gestures, passing from the
Tractatus to the Philosophische
Untersuchungen, as the following well
known episode illustrates:

“Wittgenstein was insisting that a
proposition and that which it
describes  must have the same
‘logical form’, the same ‘logical

multiplicity’, Sraffa made a gesture,
familiar to Neapolitans as meaning
something like disgust or contempt,
of brushing the underneath of his
chin with an outward sweep of the
finger-tips of one hand. And he
asked: ‘What is the logical form of
that?’ Sraffa’s example produced in
Wittgenstein the feeling that there
was an absurdity in the insistence
that a proposition and what it
describes must have the same
‘form’. This broke the hold on him of
the conception that a proposition
must literally be a ‘picture’ of the
reality it describes.” (Malcom &
Wright, 2001, p. 59)

But it is specifically in some recent research
in the field of Mathematical Education that
semiotic systems are being studied
explicitly within a wider (outer) approach
(e.g. see: Duval, 2002, 2006; Bosch &
Chevallard, 1999; Steinbring, 2005, 2006;
Radford, 2003a; Arzarello & Edwards,
2005). Such research deepens the original
approaches by people like Peirce, Frege,
Saussurre, Vygotsky and others.

I will sketch some examples: the semiotic
means of objectification, the notion of
semiotic systems (both due to Luis
Radford), the concept of Representational
Infrastructure (due to J. Kaput and to R.
Noss) and the so-called extra-linguistic
modes of expressions (elaborated by
psycholinguists). Radford introduces the
notion of semiotic means of objectification
in Radford (2003a). With this seminal
paper, Radford makes explicit the necessity
of entertaining a wider notion of semiotic
system. He underlines that:

“Within this perspective and from a
psychological viewpoint, the
objectification of mathematical
objects appears linked to the
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individuals’ mediated and reflexive
efforts aimed at the attainment of the
goal of their activity. To arrive at it,
usually the individuals have recourse
to a broad set of means. They may
manipulate objects (such as plastic
blocks or chronometers), make
drawings, employ gestures, write
marks, use linguistic classificatory
categories, or make use of
analogies, metaphors, metonymies,
and so on. In other words, to arrive
at the goal the individuals rely on the
use and the linking together of
several tools, signs, and linguistic
devices through which they organize
their actions across space and time.”

Hence he defines this enlarged system as
semiotic means of objectification, that is:

“These objects, tools, linguistic
devices, and signs that individuals
intentionally use in social meaning-
making processes to achieve a
stable form of awareness, to make
apparent their intentions, and to
carry out their actions to attain the
goal of their activities.”

The semiotic means of objectification
constitute many different types of signs (e.g.
gestures, inscriptions, words and so on).
They produce what Radford calls contextual
generalization, namely a generalization which
still refers heavily to the subject’s actions in
time and space and in a precise context, even
if he/she is using signs that have a
generalizing meaning. In contextual
generalization, signs have a two-fold semiotic
nature: they are going to become symbols
but are still indexes. We use these terms in
the sense of Peirce (see: Hartshorne, C. &
Weiss, 1933): an index gives an indication or
a hint on the object, like an image of the
Golden Gate makes you think of the town of
San Francisco (“it signifies its object solely

by virtue of being really connected with it”,
Hartshorne & Weiss, 1933, 3.361). A
symbol is a sign that contains a rule in an
abstract way (e.g. an algebraic formula).

The semiotic means of objectification also
embody important cultural features. In this
sense, Radford speaks of semiotic
systems of cultural meanings (Radford, this
volume; previously called Cultural Semiotic
Systems, Radford, 2003a), that is, those
systems which make available varied
sources for meaning-making through
specific social signifying practices; such
practices are not to be considered strictly
within the school environment but within
the larger environment of society as a
whole, embedded in the stream of its
history.  Furthermore, cultural semiotic
systems are an example of outer
enlargement of the notion of semiotic
system.

A similar example of enlargement of the
notion of semiotic system is the concept
of representational infrastructure,
introduced by J. Kaput et al. (2002), which
exploits some cultural and social features
of signs. Discussing the appearance of
new computational forms and literacies
that are pervading the social and economic
lives of individuals and nations alike, they
write:

“…The real changes are not
technical, they are cultural.
Understanding them… is a question
of the social relations among
people, not among things. The
notational systems we use to
present and re-present our thoughts
to ourselves and to others, to create
and communicate records across
space and time, and to support
reasoning and computation
constitute a central part of any
civilization’s infrastructure. As with
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infrastructure in general, it functions
best when it is taken for granted,
invisible, when it simply ‘works’.”
(Kaput et al., 2002, p. 51).

An example both of cultural semiotic
system and of representational
infrastructure, discussed in Radford
(2003a) and in Kaput et al. (2002), consists
in the developing of algebraic symbolism,
which “in more than one millennium
gradually freed itself from written natural
language and developed within a
representational infrastructure”.

As a last example of a broader notion of
semiotic system, I refer to the distinction
made by psycho-linguists between
linguistic and extra-linguistic modes of
expression. They describe the former as
the communicative use of a sign system,
the latter as the communicative use of a
set of signs (Bara & Tirassa, 1999):

“Linguistic communication is the
communicative use of a symbol
system. Language is compositional,
that is, it is made up of constituents
rather than parts... Extra-linguistic
communication is the
communicative use of an open set
of symbols. That is, it is not
compositional: it is made up of parts,
not of constituents. This makes for
crucial differences from language...”

1.3 The semiotic mediation of artefacts

In keeping with this perspective, artefacts
as representational infrastructures also
enter into semiotic systems. Realizing the
semiotic similarity between signs and
artefacts constitutes a crucial step in the
story of outer semiotic enlargements. This

similarity has two aspects. One is
ergonomic and is properly focused if one
considers the dialectic between artefact
and instrument developed by Verillon &
Rabardel (1995) who introduced the notion
of instrumental genesis. The other is
psychological and has been pointed out by
Vygotsky, who described the dialectic
relationships between signs and
instruments by what he called process of
internalization. I shall describe both in
some detail since they allow us to
understand more deeply the relevance of
the outer enlargements sketched above
and are at the basis of my definition of
semiotic bundle, which I shall introduce
below.

Let me start with the ergonomic theory of
Verillon and Rabardel4: an artefact has its
schemes of use (for example, the rules
according to which one must manage a
compass or a software) and as such it
becomes an instrument in the hands of the
people who are using it. This idea develops
in a fresh way the notion of transformation
on a semiotic system. In the ergonomic
approach, the technical devices are
considered with two interpretations.  On the
one side, an object has been constructed
according to a specific knowledge that
assures the accomplishment of specific
goals; on the other side, a user interacts
with this object, using it (possibly in
different ways). The object in itself is called
an artefact, that is, a particular object with
its features realized for specific goals and
it becomes an instrument, that is, an
artefact with the various modalities of use,
as elaborated by the individual who is using
it. The instrument is conceived as the
artefact together with the actions made by
the subject, organized in collections of
operations, classes of invariants and

4 This part of the paper is taken from Arzarello & Robutti (2004).
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utilizations schemes. The artefact, together
with the actions, constitutes a particular
instrument: thus, the same subject can use
the same artefact as different instruments.

The pair instrument-artefact can be seen
as a semiotic system in the wider sense of
the term. The instrument is produced from
an artefact introducing its rules of use and,
as such, it is a semiotic representation with
rules of use that bear an intentional character:
it is similar to a semiotic representation. As
semiotic representations, instruments can
play a fundamental role in the objectification
and in the production of knowledge. For
example: the compass is an artefact which
can be used by a student to trace a circle as
the locus of points in a plane at the same
distance from a fixed point. A cardboard disk
can be used for the same purpose as the
compass, but the concept of circle induced
by this use may be different.

The transformation of the artefact into an
instrument is made through suitable
treatment rules, e. g. for the compass, the
action of pointing it at a point and tracing a
curve with a fixed ray; for the cardboard
disk, the action of carefully drawing a line
along its border. In a similar way, students
learn to manage algebraic symbols: the
signs of Algebra or of Analysis, e.g., a2-b2

or Dx2, are transformed according to
suitable treatment rules, e.g. those
producing (a+b)(a-b) or 2x.  Just like an
artefact becomes an instrument when
endowed with its using rule, the signs of
Algebra or of Analysis become symbols,
namely signs with a rule (recall the Peirce
notion quoted above), because of their
treatment rules (see also the discussion

about techniques and technologies in
Chevallard, 1999).

In both cases, we get semiotic systems
with their own rules of treatment. As the
coordinated treatment schemes are
elaborated by the subject with her/his
actions on/with the artefacts/signs, the
relationship between the artefact/signs and
the subject can evolve. In the case of
concrete artifacts, it causes the so-called
process of instrumental genesis, revealed
by the schemes of use (the set of organized
actions to perform a task) activated by the
subject. In the example above, the
knowledge relative to the circle is
developed through the schemes of use of
the compass or of the cardboard. In the
case of algebraic signs, the analogous of
the instrumental genesis produced by
syntactic manipulations may produce
different types of knowledge relative to the
numerical structures (see the notion of
theory as emerging from the techniques
and the technologies, discussed in
Chevallard, 1999). Hence, the ergonomic
analysis points to an important functional
analogy between artefacts and signs 5.

Within a different perspective, Vygotsky
had also pointed out a similar analogy
between tools 6, which can support human
labour, and signs, which can uphold the
psychological activities of subjects:

“...the invention and use of signs as
auxiliary means of solving a given
psychological problem (to remember,
compare something, report, choose
and so on) is analogous to the
invention of tools in one psychological

5     A similar analogy is achieved within a different framework by Chevallard (1999).

     In the Cambridge Dictionary, a tool is defined as “something that helps you to do a particular activity”, an instrument is

“a tool that is used for doing something”, while an artefact is an “object”.  Following this definition, I consider the instrument

as a specific tool.

6
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respect. The signs act as instrument
of psychological activity in a manner
analogous to the role of a tool in
labour.” (Vygotsky, 1978, p. 52)

As I anticipated above, this common
approach to signs and tools is based on the
notion of semiotic mediation 7, which is at the
core of the Vygotskian frame: for a survey
see Bartolini & Mariotti (to appear) a paper
from which I take some of the following
comments.

Vygotsky pointed out both a functional
analogy and a psychological difference
between signs and instruments. The
analogy is illustrated by the following
quotation, which stresses their semiotic
functions:

 “...the basic analogy between sign
and tools rests on the mediating
function that characterizes each of
them” (ibid., p. 54).

The difference between signs and tools is
so described:

“the tool’s function is to serve as the
conductor of human influence on the
object of activity; it is externally
oriented...The sign, on the other
hand, changes nothing in the object
of a psychological operation. It is a
means of internal activity aimed at
mastering oneself: the sign is
internally oriented.” (ibid., p. 55)

This distinction is central in the Vygotskyan
approach, which points out the
transformation from externally oriented
tools to internally oriented tools (often
called psychological tools) through the
process of internalization. According to

7 It is described in Vygotsky (1978, especially p. 40 and ff).

Vygotsky, in the process of internalization,
interpersonal processes are transformed
into intrapersonal ones. The process of
internalization (through which the ‘plane of
consciousness’ is formed, see Wertsch &
Addison Stone, 1985, p.162) occurs
through semiotic processes, in particular
by the use of semiotic systems, especially
of language, in social interaction:

“...the Vygotskian formulation
involves two unique premises...First,
for Vygotsky, internalisation is
primarly concerned with social
processes. Second, Vygotsky’s
account is based largely on the
analysis of the semiotic mechanisms,
especially language, that mediate
social and individual
functioning....Vygotsky’s account of
semiotic mechanisms provides the
bridge that connects the external with
the internal and the social with the
individual...Vygotsky’s semiotic
mechanisms served to bind his ideas
concerning genetic analysis and the
social origins of behaviour into an
integrated approach...it is by
mastering semiotic mediated
processes and categories in social
interaction that human consciousness
is formed in the individual” (Wertsch
& Addison Stone, 1985, pp.163-166)

As Bartolini Bussi & Mariotti (Bartolini &
Mariotti, to appear) point out, Vygotsky
stresses the role and the dynamics of
semiotic mediation: first, externally oriented,
a sign or a tool is used in action to accomplish
a specific task; then, the actions with the sign
or the tool (semiotic activity, possibly under
the guidance of an expert), generate new
signs (words included), which foster the
internalization process and produce a new
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psychological tool, internally oriented,
completely transformed but still maintaining
some aspects of its origin.

Vygotsky describes such dynamics without
any reference to mathematics; hence, his
observations are general; many recent
studies have adapted his framework to fit
the specificity of mathematics (e.g. see
Radford, 2003a; Bartolini & Mariotti, to
appear).

2. A new theoretical frame: the
semiotic bundle

2.1 Definition and examples

My framework is also specific for
mathematics; it allows for better combining
the two issues described above, the one
from semiotics, in the spirit of the quoted
Ernest definition of semiotic systems, and
the other from psychology, according to the
Vygotskian approach. Both pictures are
essential for analyzing the learning
processes in mathematics; they are here
integrated within a wider model.

On the one hand, it is necessary to broaden
the notion of semiotic system in order to
encompass all the variety of phenomena
of semiotic mediation in the classroom, as
already suggested by Radford, who
introduced a new notion of semiotic system:

The idea of semiotic system that I
am conveying includes classical
system of representations – e.g.
natural language, algebraic
formulas, two or three-dimensional
systems of representation, in other
terms, what Duval (2001) calls
discursive and non-discursive
registers – but also includes more
general systems, such as gestures
(which have an intuitive meaning

and to a certain extent a fuzzy
syntax) and artifacts, like calculators
and rulers, which are not signs but
have a functional meaning.
(Radford, 2002, p. 21, footnote 7).

On the other hand, the psychological
processes of internalization, so important
in describing the semiotic mediation of
signs and tools, must fill a natural place
within the new model.

A major step towards the common frame
consists in reconsidering the notion of
semiotic system along the lines suggested
by Radford. Once we have a more suitable
notion of semiotic system, we shall come
back to the Vygotskian approach and show
that this fresh notion encompasses it
properly, allowing for a deeper
understanding of its dynamics.

This fresh frame takes into account the
enormous enlargement of the semiotic
systems horizon, both from the inner and
from the outer side that has been described
above. Once the semiotic systems have
been widened to contain gestures,
instruments, institutional and personal
practices and, in general, extra-linguistic
means of expression, the same idea of
operation within or between different
registers changes its meaning. It is no
longer a treatment or conversion (using the
terminology of Duval) within or between
semiotic representations according to
algorithmic rules (e.g. the conversion from
the geometric to the Cartesian register).
On the contrary, the operations (within or
between) must be widened to also
encompass phenomena that may not be
strictly algorithmic: for example, practices
with instruments, gestures and so on.

At this point of the discussion, the above
definition by Ernest can be widened to
encompass all the examples we have
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given. We thus arrive at the notion that I
have called semiotic bundle (or bundle of
semiotic sets). To define it, I need first the
notion of semiotic set, which is a widening
of the notion of semiotic system.

A semiotic set is:

a)  A set of signs which may possibly be
produced with different actions that
have an intentional character, such as
uttering, speaking, writing, drawing,
gesticulating, handling an artefact.

b)   A set of modes for producing signs and
possibly transforming them; such
modes can possibly be rules or
algorithms but can also be more flexible
action or production modes used by the
subject.

c)    A   set   of   relationships  among  these
signs and their meanings embodied in
an underlying meaning structure.

The three components above (signs,
modes of production/transformation and
relationships) may constitute a variety of
systems, which span from the
compositional systems, usually studied in
traditional semiotics (e.g. formal
languages) to the open sets of signs (e.g.
sketches, drawings, gestures). The former
are made of elementary constituents and
their rules of production involve both atomic
(single) and molecular (compound) signs.
The latter have holistic features, cannot be
split into atomic components, and the
modes of production and transformation
are often idiosyncratic to the subject who
produces them (even if they embody
deeply shared cultural aspects, according
to the notion of semiotic systems of cultural
meanings elaborated by Radford, quoted
above ). The word set must be interpreted
in a very wide sense, e.g. as a variable
collection.

A semiotic bundle is:

(i)   A collection of semiotic sets.
(ii)   A set of relationships between the sets

of the bundle.

Some of the relationships may have
conversion modes between them.

A semiotic bundle is a dynamic structure
which can change in time because of the
semiotic activities of the subject: for example,
the collection of semiotic sets that constitute
it may change; as well, the relationships
between its components may vary in time;
sometimes the conversion rules have a
genetic nature, namely, one semiotic set is
generated by another one, enlarging the
bundle itself (we speak of genetic
conversions).

Semiotic bundles are semiotic
representations, provided one considers the
intentionality as a relative feature (see the
above comment on the sand footprint).

An example of semiotic bundle is
represented by the unity speech-gesture. It
has been a recent discovery that gestures
are so closely linked with speech that “we
should regard the gesture and the spoken
utterance as different sides of a single
underlying mental process” (McNeill, 1992,
p.1), namely “gesture and language are one
system” (ibid., p.2). In our terminology,
gesture and language are a semiotic bundle,
made of two deeply intertwined semiotic sets
(only one, speech, is also a semiotic system).
Research on gestures has uncovered some
important relationships between the two (e.g.
match and mismatch, see Goldin-Meadow,
2003). A semiotic bundle must not be
considered as a juxtaposition of semiotic
sets; on the contrary, it is a unitary system
and it is only for the sake of analysis that we
distinguish its components as semiotic sets.
It must be observed that if one limits oneself
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to examining only the semiotic systems and
their bundles, many interesting aspects of
human discourse are lost: only by
considering bundles of semiotic sets can
new phenomena be discovered.

This wider approach is particularly fruitful
when the processes and activities of people
learning mathematics are scrutinized. In the
research carried out by the Turin team8 we
investigate semiotic bundles made of
several semiotic sets: e.g. gesture, speech
and written inscriptions (e.g. mathematical
symbols, drawings). The results consist in
describing some of the relationships and
conversion rules within such a complex
bundle.

Semiotic bundles allow us to frame the
Vygotskian notion of semiotic mediation
sketched above in a more comfortable
setting. The dynamics in the process of
internalization, according to Vygotsky, is
based on semiotic activities with tools and
signs, externally oriented, which produce
new psychological tools, internally oriented,
completely transformed but still maintaining
some aspects of their origin. According to
Vygotsky, a major component in this
internalization process is language, which
allows for the transformations. Moreover,
such transformations ‘curtail’ the linguistic
register of speech into a new register:
Vygotsky calls it inner speech and it has a
completely different structure.  This has
been analyzed by Vygotsky in the last (7th)
chapter of Thought and Language

(Vygotsky, 1992), whose title is Thought
and Word. Vygotsky distinguishes two
types of properties that allow us to
distinguish the inner from the outer
language: he calls them structural and
semantic properties.

The structural properties of the inner
language are its syntactic reduction and
its phasic reduction: the former consists in
the fact that inner language reduces to pure
juxtaposition of predicates minimizing its
syntactic articulation; the latter consists in
minimizing its phonetic aspects9, namely
curtailing the same words.

According to Vygotsky’s frame, the
semantic properties of the inner language
are based on the distinction made by the
French psychologist Frederic Pauhlan
between the sense and the meaning of a
word and by “the preponderance of the
sense [smysl] of a word over its meaning
[znachenie]” (Vygotsky, 1978, p. 244):

“the sense is...the sum of all the
psychological events aroused in our
consciousness by the word. It is a
dynamic, fluid, complex whole,
which has several zones of unequal
stability. Meaning is only one of the
zones of sense, the most stable and
precise zone. A word acquires its
sense from the context in which it
appears; in different contexts, it
changes its sense. ”  (ibid., p. 244-
245).

     This is being done by our colleagues Luciana Bazzini and Ornella Robutti, by some doctoral and post-doc students,

like Francesca Ferrara and Cristina Sabena, and by many teachers (from the elementary to the higher school level) that

participate actively to our research, like Riccardo Barbero, Emilia Bulgarelli, Cristiano Dané, Silvia Ghirardi, Marina Gilardi,

Patrizia Laiolo, Donatella Merlo, Domingo Paola, Ketty Savioli, Bruna Villa and others.

      To make an analogy with the outer language, Vygotsky recalls an example, taken from Le Maitre (1905), p. 41: a child

thought to the French sentence “Les montagnes de la Suisse sont belles” as “L m d l S s b” considering only the initial

letters of of the sentence. Curtailing is a typical feature of inner language.

8

9
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      Vygotsky makes the analogy with the outer language alluding to so-called agglutinating languages which put together

many different words to constitute a unique word.

     
To give an idea of  influence, Vygotsky makes reference to  The Dead Souls by N.V. Gogol whose title, by the end of

the book, should mean to us “not so much the defunct serfs as all the characters in the story who are alive physically but

dead spiritually” (ibid., p. 247)

      Another research project that our group is pursuing concerns the role of teachers’ gestures with respect to the learning

processes of students: how they are shared by students and how they influence their conceptualization processes.

In inner language, the sense is always
overwhelming the meaning. This prevailing
aspect of the sense has two structural effects
on inner language: the agglutination and the
influence.  The former consists in gluing
different meanings (concepts) into one
expression10; the latter happens when the
different senses ‘flow’ together11 into one
unity.

To explain the properties of inner speech,
Vygotsky uses analogies that refer to the
outer speech and these give only some idea
of what he means: in fact, he uses a semiotic
system (written or spoken language) to
describe something which is not a semiotic
system. The grounding metaphors through
which Vygotsky describes inner speech show
its similarity to semiotic sets: properties like
agglutination and influence make inner
speech akin to some semiotic sets, like
drawings, gestures and so on. Also, the
syntactic phenomena of syntactic and phasic
reduction mean that the so-called linear and
compositional properties of semiotic systems
are violated. Vygotsky’s description through
the lens of semiotic systems makes this
aspect only partially evident.

The notion of semiotic bundle properly frames
the most important point in Vygotsky’s
analysis, namely, the semiotic
transformations that support the
transformation from outer to inner speech
(internalization). The core of Vygotsky’s
analysis, namely, the internalization process,
consists exactly in pointing out a genetic
conversion within a semiotic bundle: it

10

11

generates a fresh semiotic component, the
inner speech, from another existing one, the
outer speech. The description is given using
the structure of the former, which is clearly a
semiotic system, to build grounding
metaphors in order to give an idea of the
latter, which is possibly a semiotic set. The
whole process can be described as the
enlarging of a bundle through a genetic
conversion process.

The main point of this paper consists in using
the notion of semiotic bundle to frame the
mathematical activities that take place in the
classroom. I will argue that learning
processes happen in a multimodal way,
namely in a dynamically developing bundle,
which enlarges through genetic conversions
and where more semiotic sets are active at
the same moment. The enlargement
consists both in the growing of (the number
of) active semiotic sets within the bundle and
in the increase of the number of relationships
(and transformations) between the different
semiotic sets.

Their mutual relationships will be analyzed
through two types of lenses, which I have
called synchronic and diachronic since they
analyze the relationship among processes
that happen simultaneously or successively
in time. The two approaches, which will be
discussed below, allow us to frame many
results in a unitary way: some are already
known but some are new. In particular, I shall
investigate the role of gestures in the
mathematical discourses of students12. I will
argue that they acquire a specificity in the

12
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construction of meaning in mathematical
activities because of the rich interplay among
three different types of semiotic sets: speech,
gestures and written representations (from
sketches and diagrams to mathematical
symbols). They constitute a semiotic bundle,
which dynamically evolves in time.

To properly describe this interplay and the
complex dynamics among the different
semiotic sets involved in the bundle, I need
some results from psychologists, who study
gesture.  In the next two sections (2.2 and
2.3) I will sketch out some of these.

2.2 Semiotic bundles and multimodality

In mathematics, semiotic representations are
deeply intertwined with mental ones (see the
discussion in Duval, 2006, pp. 106-107).  On
the one side, there is a genetic relationship
between them: «the mental representations
which are useful or pertinent in mathematics
are always interiorized semiotic
representations» (Duval, 2002, p.14). See
also the discussion on the internalisation
processes in Vygotsky.

On the other side, very recent discoveries in
Neuropsychology underline the embodied
and multimodal aspects of cognition. A major
result of neuroscience is that “conceptual
knowledge is embodied, that is, it is mapped
within the sensory-motor system” (Gallese &
Lakoff, 2005, p.456). “The sensory-motor
system not only provides structure to
conceptual content, but also characterizes
the semantic content of concepts in terms of
the way in which we function with our bodies
in the world” (ibid.). The sensory-motor
system of the brain is multimodal rather
than modular; this means that

“an action like grasping...(1) is
neurally enacted using neural
substrates used for both action and
perception, and (2) that the

modalities of action and perception
are integrated at the level of the
sensory-motor system itself and not
via higher association areas.” (ibid.,
p. 459).

“Accordingly, language is inherently
multimodal in this sense, that is, it
uses many modalities linked
together—sight, hearing, touch,
motor actions, and so on. Language
exploits the pre-existing multimodal
character of the sensory-motor
system.” (ibid., p. 456).

The paradigm of multimodality implies that
“the understanding of a mathematical
concept rather than having a definitional
essence, spans diverse perceptuomotor
activities, which become more or less
active depending of the context.”
(Nemirovsky, 2003; p. 108).

Semiotic bundles are the real core of this
picture: they fit completely with the embodied
and the multimodal approach.  At least one
consequence of this approach is that the
usual transformations and conversions (in
the sense of Duval) from one register to the
other must be considered as the basic
producers of mathematical knowledge.
Furthermore, its essence consists in the
multimodal interactions among the different
registers within a unique integrate system
composed of different modalities: gestures,
oral and written language, symbols, and so
on (Arzarello & Edwards, 2005; Robutti,
2005). Also, the symbolic function of signs is
absorbed within such a picture.

Once the multimodal nature of processes is
on the table, manipulations of external signs
and of mental images show a common
psychological basis: transformational and
symbolic functions are revealed as
processes that have a deep common
nature.
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I will argue that if we mobilize a rich semiotic
bundle with a variety of semiotic sets (and
not only semiotic systems) with their complex
mutual relationships (of transformation,
conversion, symbolic functions as multimodal
interactions among them) students are
helped to construct integrated models for the
mathematical knowledge they are supposed
to learn and understand. In fact,
mathematical activity is featured by the
richness of the semiotic bundle that it
activates. However, things may not be so in
the school, where two negative phenomena
can push the process in the opposite
direction. I call them the Piaget and the
Wittgenstein effect, respectively:

a) (Piaget effect). Piaget made the search
for isomorphisms one of the key principles
for analyzing knowledge development in
children. This emphasis risks
underestimating the relevance of the different
registers of representation:

« Dismissing the importance of the
plurality of registers of representation
comes down to acting as if all
representations of the same
mathematical object had the same
content or as if the content of one
could be seen from another as if by
transparency!” (Duval, 2002, p.14).

b) (Wittgenstein effect). Recall the story about
Sraffa and Wittgenstein. The author of
Tractatus in the first phase of his research
revealed a sort of blindness to semiotic sets
(in that case, the gesture register). This is
also the case for many mathematicians and
teachers: they are possibly interested in
semiotic systems as formal systems, while
the wider semiotic sets are conceived as
something that is not relevant for
mathematical activities, especially at the
secondary school level.

A consequence of these effects in the

classroom is that only some semiotic
systems are considered, while semiotic
bundles (generally not even restricting
oneself to the bundles of semiotic systems)
are not taken into account. And even when
different semiotic systems are considered,
they are always conceived as signifiers of
the same object. On the contrary, the
representations within a semiotic bundle
have their own specificity in promoting an
integrated mental model according to the
multimodal paradigm, as we shall show in
the next chapter.

2.3 Gestures within semiotic bundles

Among the components of semiotic
bundles, the semiotic set of gestures has
an important role, especially when its
relationship with speech and written signs
are considered within a multimodal picture.
Psychologists have mainly studied
gestures in day to day conversation: I shall
go over some of their findings in the
remaining part of this chapter and I will
describe the relationship of gestures (and
speech) to written signs in Chapter 3. To
do this, I will elaborate upon some of the
papers in Arzarello & Edwards (2005),
especially the Introduction, and I will also
quote some results of Bucciarelli (in print).

Two main points from psychology are
important to discuss the way gestures
enter into the multimodal semiotic analysis
within which we frame the understanding
of mathematical concepts in students.

The first point concerns the so-called
Information Packaging Hypothesis. It
expands the idea that “gestures, together
with language, help constitute thought”
(McNeill, 1992, p. 245). According to
McNeill (p. 594-5), gesture plays a role in
cognition—not just in communication—
since it is involved in the conceptual
planning of the messages and plays a role
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in speech production because it plays a role
in the process of conceptualization.
Gesture “helps speakers organize rich
spatio-motoric information into packages
suitable for speaking [...] by providing an
alternative informational organization that
is not readily accessible to analytic thinking,
the default way of organizing information
in speaking” (Kita, 2000).

Spatio-motoric thinking (constitutive of what
Kita calls representational gestures)
provides an alternative informational
organization that is not readily accessible
to analytic thinking (constitutive of speaking
organization). Analytic thinking is normally
employed when people have to organize
information for speech production, since
speech is linear and segmented (composed
of smaller units); namely, it is a semiotic
system. On the other hand, spatio-motoric
thinking is instantaneous, global and
synthetic, not analyzable into smaller
meaningful units, namely, it is a semiotic
set. This kind of thinking and the gestures
that arise from it are normally employed
when people interact with the physical
environment, using the body (interactions
with an object, locomotion, imitating
somebody else’s action, etc.). It is also
found when people refer to virtual objects
and locations (for instance, pointing to the
left when speaking of an absent friend
mentioned earlier in the conversation) and
in visual imagery. Within this framework,
gesture is not simply an epiphenomenon
of speech or thought; gesture can
contribute to creating ideas:

“According to McNeill, thought
begins as an image that is
idiosyncratic. When we speak, this
image is transformed into a linguistic
and gestural form. ... The speaker
realizes his or her meaning only at
the final moment of synthesis, when
the linear-segmented and analyzed

representations characteristic of
speech are joined with the global-
synthetic and holistic representations
characteristic of gesture. The
synthesis does not exist as a single
mental representation for the speaker
until the two types of representations
are joined. The communicative act is
consequently itself an act of thought.
... It is in this sense that gesture
shapes thought.” (Goldin-Meadow,
2003, p. 178).

A second point, claimed by Bucciarelli (in
press), concerns the relationships between
Mental Models (see Johnson Laird, 1983,
2001) and gestures. Many studies in
psychology claim that the learning of
declarative knowledge involves the
construction of mental models. Bucciarelli
argues that gestures accompanying
discourse can favour the construction of
such models (and therefore of learning).
In Cutica & Bucciarelli (2003) it is shown
that when gestures accompany discourse
the listener retains more information with
respect to a situation in which no gestures
are performed: “The experimental
evidence is in favour of the fact that gesture
do not provide redundancy, rather they
provide information not conveyed by
words” (Bucciarelli, in press).

Hence, gestures lead “to the construction
of rich models of a discourse, where all the
information is posited in relation with the
others” (ibid.).

In short, the main contribution of
psychology to the theory of semiotic
bundles consists in this: the multimodal
approach can favour the understanding of
concepts because it can support the
activation of different ways of coding and
manipulating the information (e.g. not only
in an analytic fashion) within the semiotic
bundle. This can foster the construction of
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a plurality of mental models, whose
integration can produce deep learning.

Of course these observations are general
and concern general features of learning.
In the next chapter, I shall discuss how this
general frame can be adapted to the
learning of mathematics.

This attention to semiotic bundles
underlines the fact that mathematics is
inseparable from symbolic tools but also
that it is “impossible to put cognition apart
from social, cultural, and historical factors”
(Sfard & McClain, 2002, p. 156), so that
cognition becomes a “culturally shaped
phenomenon” (ibid.). In fact, the embodied
approach to mathematical knowing, the
multivariate registers according to which it
is built up and the intertwining of symbolic
tools and cognition within a cultural
perspective are the basis of a unitary frame
for analyzing gestures, signs and artefacts.
The existing research on these specific
components finds a natural integration in
such a frame (Arzarello & Edwards, 2005).

In the next chapter, I will focus the attention
on the ways in which semiotic bundles are
involved in the processes of building
mathematical knowledge in the classroom.

3. Semiotic bundles in mathematics
learning.

3.1 Synchronic and diachronic analysis

In this chapter, I will illustrate how the notion
of semiotic bundle can suitably frame the
mathematising activities of young students
who interact with each other while solving
a mathematical problem. What we will see

is a consequence of these social
interactions, which can happen and
develop because of the didactical
situations to which the students are
exposed. As I shall sketch below, they are
accustomed to developing mathematics
discussions during their mathematics
hours. The richness of the semiotic bundle
that they use depends heavily on such a
methodology; in a more traditional
classroom setting, such richness may not
exist and this may be the cause of many
difficulties in mathematical learning: see
the comments in Duval (2002, 2006),
already quoted, about this point.

The example under consideration
concerns elementary school and has been
chosen for two reasons: (1) it is emblematic
of many phenomena that we have also
found at different ages; (2) the simplicity
of the mathematical content makes it
accessible for everyone.

In the example, I shall show that students
in a situation of social interaction use a
variety of semiotic sets within a growing
semiotic bundle and I shall describe the
main mutual relationships among them. To
do that, I will use two types of analysis,
each focusing on a major aspect of such
relationships. The first one is synchronic
analysis, which studies the relationships
among different semiotic sets activated
simultaneously by the subject. The second
is diachronic analysis, which studies the
relationships among semiotic sets
activated by the subject in successive
moments. This idea has been introduced
by the authors in Arzarello & Edwards
(2005) under the names of parallel and
serial analysis. I prefer the terminology “à
la Saussurre” (13) because it underlines the

    Saussure distinguishes between synchronic (static) linguistics and diachronic (evolutionary) linguistics. Synchronic

linguistics is the study of language at a particular point in time. Diachronic linguistics is the study of the history or evolution

of language.

13
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time component that is present in the
analysis. However, our time grain is at a
different scale, that is, while Saussurre
considers long periods of time concerning
the historical evolution of at most two
semiotic systems (spoken and written
language), I consider the interactions
among many different semiotic sets over
very short periods of time.

Synchronic analysis, even if under a
different name, is present in the study of
gestures: e.g. the distinction made by
Goldin-Meadow between matching and
mismatching considers gesture and speech
produced at the same moment and
conveying equal or different information.
Another example of synchronic analysis
can be made in mathematics when
considering the production of drawings (or
formulas) and of speech by students who
are solving a problem (see e.g. Arzarello,
2005; but the literature is full of examples).
A further example is the semiotic node,
discussed by Radford et al. (2003b).

Also, diachronic analysis is not completely
new in the literature on signs: e.g. see the
notion of mathematical objectification in
Radford, or that of conversion in Duval,
both discussed above. The power of
diachronic analysis changes significantly
when one considers the semiotic bundles.
In fact, the relationship between sets and
systems of signs cannot be fully analyzed
in terms of translation or of conversion
because of the more general nature of the
semiotic sets with respect to the semiotic
systems. The modes of conversion
between a semiotic set and a semiotic
system make evident a genetic aspect of
such processes, since a genuine
transformation (conversion) is a priori
impossible. In fact, a transformation
presupposes an action between two
already existing systems like in the
translation from one language to another.

In our case, on the contrary, there is a
genesis of signs from a set or a system to
a system or a set. The fresh signs with the
new set (system) are often built preserving
some features of the previous signs (e.g.
like the icon of a house preserves some of
the features of a house according to certain
cultural stereotypes). The preservation
generally concerns some of the
extralinguistic (e.g. iconic) features of the
previous signs, which are generating new
signs within the fresh semiotic set (or
system); possibly, the genesis continues
with successive conversions from the new
sets (systems) into already codified
systems. Hence, the process of
conversion described by Duval concerns
mainly the last part of the phenomenon,
which involves the transformation
between already existing systems. Our
analysis shows that such process starts
before and has a genetic aspect, which
is at  the root of  the genesis of
mathematical ideas.

The main point is that only considering
semiotic sets allows us to grasp such a
phenomenon, possibly through a
diachronic analysis. In fact, nothing
appears if one considers only semiotic
systems or considers synchronic events.

One could think that such a genesis is far
from the sophisticated elaborations of more
advanced mathematics. But things are not
so; I have examples of this genesis
concerning the learning of Calculus (see:
Arzarello & Robutti, to appear).

The two analyses, synchronic and
diachronic, allows us to focus on the roles
that the different types of semiotic sets
involved (gestures, speech, different
inscriptions, from drawings to arithmetic
signs)  play in the conceptualization
processes of pupils. The general frame is
that of multimodality, sketched above.
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3.2 The example 14

The activity involves pupils attending the
last year of primary school (5th grade, 11
y.o.); the teacher gives them a
mathematical story that contains a problem
to solve, taken from the legend of
Penelope’s cloth in Homer’s Odyssey. The
original text was modified to get a problem-
solving situation that necessitated that the
students face some conceptual nodes of
mathematics learning (decimal numbers;
space-time variables). The text of the story,
transformed, is the following:

… On the island of Ithaca, Penelope
had been waiting twenty years for the
return of her husband Ulysses from
the war. However, on Ithaca a lot of
men wanted to take the place of
Ulysses and marry Penelope. One
day the goddess Athena told
Penelope that Ulysses was returning
and his ship would take 50 days to
arrive in Ithaca. Penelope immediately
summoned the suitors and told them:
“I have decided: I will choose my
bridegroom among you and the
wedding will be celebrated when I
have finished weaving a new piece of
cloth for the nuptial bed. I will begin
today and I promise to weave every
two days; when I have finished, the
cloth will be my dowry.” The suitors
accepted. The cloth had to be 15 spans
in length. Penelope immediately began
to work, but one day she would weave
a span of cloth, while the following day,
in secret, she would undo half a
span… Will Penelope choose another
husband? Why?

When the Penelope’s story was submitted
to the students (Dec. 2004- Feb. 2005) they

were attending the last year of primary
school (5th grade). Later, in April-May
2005, in the same school six more teachers
submitted the story to their classrooms, as
part of an ongoing research project for the
Comenius Project DIAL-Connect (Barbero
et al., in press). Students were familiar with
problem solving activities, as well as with
interactions in group. They worked in
groups in accordance with the didactical
contract that foresaw such a kind of
learning. The methodology of the
mathematical discussion was aimed at
favouring the social interaction and the
construction of shared knowledge. As part
of the didactical contract, each group was
also asked to write a description of the
process followed to reach the problem
solution, including doubts, discoveries,
heuristics, etc.  The students’ work and
discussions were videotaped and their
written notes were collected. The activity
consisted of different steps that we can
summarize as follows. First, the teacher
reads the story and checks the students’
understanding of the text; the story is then
delivered to the groups. Different materials
are at the students’ disposal, among which
paper, pens, colours, cloth, scissors, glue.
In a second phase, the groups produce a
written solution. The teacher invites the
groups to compare the solutions in a
collective discussion; she analyses
strategies, difficulties, misconceptions,
thinking patterns and knowledge content
to be strengthened. Then, a poster with the
different groups’ solutions is produced. In
the final phase, the students are required
to produce a number table and a graph
representing the story; they work
individually using Excel to construct the
table and the graph of the problem solution.
Again, they discuss about different
solutions and share conclusions.

This part of the paper is partially taken from Arzarello et al. (2006), with the permission of the other authors.14
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The part of the activity analyzed below is
a small piece of the initial phase (30’); it
refers to a single group composed of five
children: D, E, M, O, S, all of them
medium achievers except M, who is weak
in mathematical reasoning.

3.3 Analysis: a story of signs under the
lenses of diachronic and synchronic

analysis.

The main diff iculty of the Penelope
problem is that it requires two registers
to be understood and solved: one for
recording the time, and one for recording
the successive steps of the cloth length.
These registers must be linked in some
way, through some relat ionship
(mathematic ians would speak of a
function linking the variables time and
cloth length). At the beginning, these
variables are not so clear for the students.
So, they use different semiotic sets to
disentangle the issue: gestures, speech,
written signs. They act with and upon
them; they interact with each other; they
repeatedly use the text of the story to
check their conjectures; they use some
arithmetic patterns.

We see an increasing integration of these
components within a semiotic bundle: in
the end, they can grasp the situation and
objectify a piece of knowledge as a result
of a complex semiotic and multimodal

process. We shall sketch some of the
main episodes and will comment a few
key points in the f inal  conclusion
(numbers in brackets indicate time).

Episode 1. The basic gestures
(synchronic analysis).

After reading the text, the children start
rephrasing, discussing and interpreting
it. To give sense to the story, they focus
on the action of weaving and unraveling
a span of cloth which is represented by
different gestures: a hand sweeping
across the desk (Fig. 1), the thumb and
the index extended (Fig. 2), two hands
displaced parallel on the desk (Figs. 3
and 4). Some gestures introduced by one
student are easily repeated by the others
and become a reference for the whole
group.

This is the case of the two parallel hands
shown in Figs. 3 and 4. Attention is
focused on the action, and the gestures
occur matching either the verbal clauses
or the “span”, as we can see from the
following excerpt:

(6’58’’) S: She makes a half (hand
gesture in Fig. 2), then she takes some
away (she turns her hand), then she
makes… (again, her hand is in the
position of Fig. 2) […]

 
            Figure 1     Figure 2            Figure 3         Figure 4
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E: “It is as if you had to make a piece like
this, it is as if you had to make a piece of
cloth like this, she makes it (gesture in Fig.
3). Then you take away a piece like this
(gesture in Fig. 5), then you make again a
piece like this (gesture in Fig. 3) and you
take away a piece like this (gesture in Fig.
5)”

O: “No, look… because… she made a span
(Fig. 4) and then, the day after, she undid
a half (O carries her left hand to the right),
and a half was left… right? … then the day
after…”

D: (D stops O) “A half was always left”

 Figure 5

The dynamic features of gestures that
come along with speech condense the
two essential elements of the problem:
time passing and Penelope’s work with
the cloth. Their existence as two entities
is not at all explicit at this moment, but,
through gesturing, children make the
problem more tangible. The function of
gestures is not only to enter into the
problem, but also to create situations of
discourse whose content is accessible to
everyone in the group. The rephrasing of
simi lar words and gestures by the
students (see the dispositions of the
hands in Fig. 4) starts a dynamics for
sharing various semiotic sets, with which
the group starts to solve the problem. At
the moment, the semiotic bundle is made
up of their gestures, gazes and speech .

Episode 2. A new semiotic set: from
gestures to written signs (diachronic

analysis).

After having established a common
understanding of what happens in
Penelope’s story, the children look for a
way to compute the days. S draws a
(iconic) representation of the work
Penelope does in a few days, actually
using her hand to measure a span on
paper. The previous gesture performed by
different students (Figs. 3-5) now becomes
a written sign (Fig. 6). As had happened
before with words and gestures, the
drawing is also imitated and re-echoed by
the others (Fig. 7): even these signs,
generated by the previous gestures,
contribute to the growth of the semiotic
bundle. The use of drawings makes
palpable to the students the need of
representing the story using two registers.
See the two types of signs in Figs. 7-8: the
vertical parallel strokes (indicating spans
of cloth) and the bow sign below them
(indicating time).

Episode 3. The mutimodality of
semiotic sets I: towards a local rule
(diachronic + synchronic analysis).

In the following excerpts, the children
further integrate what they have produced
up to now (speech, gestures and written
representations) and also use some
arithmetic; their aim is to grasp the rule in
the story of the cloth and to reason about
it. They can now use the written signs as
“gestures that have been fixed” (Vygotsky,
1978; p. 107) and represent the story in a
condensed way (see Fig. 8); moreover,
they check their conjectures reading again
the text of the problem:
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but the group does not easily accept it
and O gets confused. The drawing
introduced by S (Fig. 8) represents the
cloth, but with holes; due to the inherent
rigidity of the drawing, students easily
see the span, but not half a span. A lively
discussion on the number of days needed
to have a span begins. Numbers and
words are added to the drawings (Figs. 9-
10) and fingers are used to compute (Fig.
11). New semiotic resources enter the
scene within different semiotic sets which
are integrating each other more and more,
not by juxtaposition or translation but by
integration of their elements: they all
continue to be active within the semiotic
bundle, even later, as we shall see below.

Episode 4. The multimodality of
semiotic sets II: towards a global rule

(diachronic analysis).

Once the local question of “how many days
for a span” is solved, the next step is to

(10’30’’) S: From here to here it is two
spans (she traces a line, mid of Fig. 8). If
I take half, this part disappears (she
traces the horizontal traits in Fig. 8) and
a span is left; therefore in two days she
makes a span

O: No, in four days, in four, because…

S: In four days she makes two spans,
because (she traces the curve under the
traits in Fig. 8)…plus this

O: In four days she makes one, because
(she reads the text), one day she wove a
span and the day after she undid a half…

As one can see in Fig. 7, S tries to
represent on paper Penelope’s work of
weaving and also of unraveling, which
causes troubles, because of the necessity
of marking time and length in different
ways. These two aspects naturally co-
existed in gestures of Figg. 1-3. O finds
the correct solution (4 days for a span),

 

 

                      Figure 6              Figure 7                               Figure 8

                      Figure 9              Figure 10                               Figure 11
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solve the problem globally. To do that, the
rule of “4 days for a span” becomes the
basis (Fig.12) of an iterative process:

(13’30’’) O, E:… it takes four days to make
a whole span (E traces a circle with the
pen all around: Fig. 12)

D: and another four to make a span (D
shows his fingers) and it adds to 8 (D
counts with fingers)

S: so, we have to count by four and arrive
at 50 days (forward strategy: Fig. 13) [...]
(14’25’’) O: no, wait, for 15 spans, no, 4
times 15

S: no, take 15, and always minus 4, minus
4, minus 4 (or: 4 times 5), minus 2, no,
minus 1 [backward strategy: Fig. 14]

Two solving strategies are emerging here:
a forward strategy (counting 4 times 15 to
see how many days are needed to weave
the cloth) and a backward strategy
(counting “4 days less” 15 times to see if
the 50 days are enough to weave the cloth).
The two strategies are not so clear to the
children and conflict with each other.

In order to choose one of them, the children
use actual pieces of paper, count groups
of four days according to the forward
strategy and so they acquire direct control
over the computation. Only afterwards do
they compute using a table and find that
60 days are needed for 15 spans of cloth.
In this way, they can finally answer the

 
                Figure 12         Figure 13                 Figure 14       Figure 15

question of the problem and write the final
report: Penelope will not choose another
bridegroom.

Conclusions

The story of signs described in the
example illustrates the nature of semiotic
bundles. The first signs (gestures, gazes
and speech) constitute a first basic
semiotic bundle, through which the
children start their semiotic activities.
Through them, the bundle is enriched with
new semiotic sets (drawings and numbers)
and with a variety of fresh relationships
among them. The enlargement occurs
through genetic conversions, namely
through a genetic process, where the
previous semiotic sets (with their mutual
relationships) generate new semiotic
components and change because of this
genesis, becoming enriched with fresh
mutual relationships.  By so doing, not only
do the students produce new semiotic sets,
but the sense—in the Vygotskian meaning
of the word—of the older ones is
transformed, stil l maintaining some
aspects of their origin. All these processes
develop within a gradually growing and
multimodal cognitive environment that we
have analyzed through the lens of the
semiotic bundle.

The story of the bundle starts with the
gesture of the two hands displaced parallel
on the desk (episode 1). This gesture later
generates a written iconic representation
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(episode 2), successively enriched by
numerical instances (episode 3) and by
arithmetic rules (episode 4), expressed
through speech and (new and old) gestures.
Gesture, speech, written signs and arithmetic
representations grow together in an
integrated way supporting the semiotic
activities within the semiotic bundle which
enlarges more and more. Students develop
their semiotic activities and share them: it is
exactly through such activities that they can
grasp the problem, explore it and elaborate
solutions.

All the components are active in a multimodal
way up to the end. This is even evident when
the students discuss how to write the solution
in the final report (Fig. 15: 27’ 32”). Gestures
and speech intervene first as cognitive means
for understanding the story of the cloth; later
as means of control for checking the
conjectures on the rule. Information is
condensed in gestures, entailing a global
understanding of the story. The two variables
(time and cloth development), first condensed
in gesture (an agglutination example in the
sense of Vygotsky), generate two different
signs in the fresh semiotic set (drawings) that
they themselves have generated within the
semiotic bundle: it is exactly this
disentanglement that allows children to grasp
the story separating its structural elements.
On its own, speech objectifies the structure
of the story, first condensing the local rule in
a sentence (episode 3), then exploiting the
general rule as an iterative process (episode
4).

The semiotic objectification in this story
happens because of the semiotic activities
within the semiotic bundle. It is evident that it
constitutes an integrated semiotic unity; the
activity within it does not consist of a
sequence of transcriptions from one register

to another, as posited in other studies (e.g.
Duval, 1993). On the contrary, it develops in
a growing, holistic and multimodal way,
which, in the end, produces the objectification
of knowledge.

The lenses of semiotic bundles allow us to
frame the semiotic phenomena that occur in
the classroom within a unitary perspective.
Moreover, a semiotic bundle also
incorporates dynamic features, which can
make sense of the complex genetic
relationships among its components, e.g. the
genetic conversions and the Vygotskian
internalization processes.

This study leaves many problems open: I list
only some of those I am interested in
studying in the near future:

1.  Elsewhere   (Arzarello,   in    press),  I
introduced the notion of Space of Action,
Production and Communication (APC-
space) as an environment in which
cognitive processes develop through
social interaction; its components are:
culture, sensory-motor experiences,
embodied templates, languages, signs,
representations, etc. These elements,
merged together, shape a multimodal
system through which didactical
phenomena are described. An interesting
problem consists in studying the
relationships between the semiotic
bundles and the APC-space.

2.  The  time   variable  is  important in the
description of semiotic bundles, e.g. it is
relevant to the diachronic and synchronic
analysis. What are the connections
between this frame and the didactic
phenomena linked to students ‘inner
times15’, like those described in Guala
& Boero (1999)?  There, the authors

  I thank Paolo Boero for suggesting this problem to me.15
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list different types of inner times in
students’ problem solving activities  (the
‘time of past experience’, the
‘contemporaneity time’, the ‘exploration
time’, the ‘synchronous connection
time’), which make sense of their mental
dynamics. Of course, such activities can
be analyzed with semiotic lenses. How
do the different inner times enter into a
semiotic bundle? Which kinds of
conversions or treatments can they
generate from one semiotic set to
another or within the same semiotic
set?.
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Conclusiones y perspectivas

de investigación futura

Bruno D’Amore

No cabe duda de que la semiótica, disciplina surgida de un género de estudio del todo
diverso (véase la Introducción de Luis Radford en esta misma revista), ha conquistado
un lugar importante en los estudios de Didáctica de la Matemática.

Respecto a su ingreso en dicho campo, la visión semiótica inició solidificando sus diversos
aspectos con trabajos que explicaban el pasaje del concepto a sus representaciones,
para después abrir su camino en direcciones diferentes, como lo demuestra la amplia
colección de estudios que en esta publicación aparecen. Ahora, el desafío consiste en
tratar de entender hacia qué tendencia se moverá la investigación en el futuro. Para
poder plantear algunas hipótesis, considero útil un ulterior análisis de la historia reciente
y de las mismas bases culturales.

Una problemática importante –y todavía central– es la tocante a la representación de
los objetos matemáticos. Por lo general, en Didáctica de la Matemática decimos “pasar
de un concepto a sus representaciones”; sin embargo, ¿qué es un concepto? La pregunta
aún continúa siendo fundamental. En D’Amore, 2006 (pp. 205-220) intenté plantear las
bases para responder a dicha cuestión, aparentemente ingenua; empero, lo que se
llega a constatar, con certeza absoluta, es que la definición revela, por muchos motivos,
una complejidad inmensa.

Entre las dificultades que presenta la definición, está que en la idea de concepto
intervienen muchos factores y causas. Para decirlo brevemente (y, por tanto, en modo
incompleto), no parece correcto afirmar que un concepto matemático es aquel que se
halla en la mente de los científicos que a este tema han dedicado su vida de estudio y
reflexión. Parece más correcto señalar que hay una fuerte componente antropológica.

Así, en la construcción de un concepto participarían tanto la parte institucional (el Saber)
como la personal (de quien tiene acceso a tal Saber, que implica no sólo el científico).
Esta propuesta la han expuesto diferentes autores; yo me limito a sugerir el trabajo de
Godino y Batanero, 1994, porque hace hincapié en la importancia del debate en el cual
estoy tratando de inserirme, al tratar las relaciones entre significados institucionales y
personales de los objetos matemáticos.

Distinguir el concepto de su construcción no es fácil y, quizá, no es ni posible ni deseable,
ya que un concepto se halla continuamente en fase de construcción; aquí estriba su
parte más problemática, pero también la más rica de su significado. Podríamos llamar a
tal construcción conceptualización, y reflexionar sobre qué es y cómo se da. En el intento
por clarificar dicho argumento, muchos investigadores han propuesto hipótesis y teorías
que no detallaré; basta recordar las contribuciones –muchas veces en franca oposición–
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de Vygotski, Piaget, Gal’perin, Bruner o
Gagné. Para una rápida recapitulación,
puede consultarse D’Amore, 2006.

Adentrarse en esta aventura nos conduce,
por lo menos, a darnos cuenta de un hecho:
la segunda pregunta, ¿qué es o cómo se
llega a la conceptualización?, es un
misterio. La cuestión pasa a través de un
recorrido por los famosos triángulos (hay
bibliografía específica en D’Amore, 2006):

• El de Charles Sanders Peirce (1839-
1914), publicado en 1883: intérprete,
representante, objeto

• El  de  Gotlob  Frege  (1848-1925),
publicado en 1892: Sinn [sentido],
Zeichen [expresión], Bedeutung
[indicación]

•  El de C. K. Ogden e I. A. Richards, que
quería ser un compendio de los otros
dos, y apareció en 1923: referencia,
símbolo, referente

•  El  de  G.  Vergnaud  (1990), por el cual
un concepto C es la terna (S, I, S),
donde S es el referente, I el significado
y S el significante

Queda claro que apropiarse de un
concepto, independientemente de lo que
esto signifique, necesita siempre de algo
más que nombrarlo (la cuestión se originó
por lo menos en la Edad Media, apunta
D’Amore, 2006) y representarlo, lo cual nos
lleva a la famosa paradoja de Duval, 1993
(p. 38).

Kant, en la Crítica de la razón pura, señala
que el conocimiento es resultado de un
contacto entre un sujeto que aprende y un
objeto de conocimiento. Él recurre a una
comparación: así como el líquido adopta
la forma del recipiente que lo contiene, las

impresiones sensoriales adoptan las
formas que le imponen las estructuras
cognitivas. Pero para que eso suceda (y
es la bien conocida hipótesis fuerte de
Kant) se requieren de formas innatas de
sensibilidad, como espacio, tiempo,
causalidad, permanencia del objeto y uso
de experiencias precedentes.

El conocimiento no es una simple
representación de la realidad externa, sino
el resultado de la interacción entre el sujeto
que aprende (sus estructuras cognitivas)
y sus experiencias sensoriales. Además,
el sujeto que aprende abandona la típica
pasividad (cartesiana o lockiana), pues
construye y estructura sus experiencias; de
este modo, participa activamente en el
proceso de aprendizaje y lo transforma en
una verdadera y propia construcción. Un
objeto de conocimiento, al entrar en
contacto con un sujeto que aprende, se
modifica y reconstruye por los instrumentos
cognitivos del sujeto.

Pero, ¿de dónde provienen esos
instrumentos cognitivos que sirven para
transformar las experiencias del sujeto? La
epistemología del aprendizaje de Kant,
para usar una terminología moderna, se
refiere a un aprendiz adulto, dotado de un
lenguaje desarrollado, con capacidad de
abstracción y de generalización. Aquí es
pertinente la siguiente pregunta: ¿cómo
cambia todo esto si hablamos de
aprendizaje en ambiente escolar, de
aprendices no adultos (niños, adolescentes
o jóvenes) y a las primeras armas, con
lenguajes aún en elaboración?

No es del todo absurdo pensar que la
epistemología constructivista de Piaget,
formulada en los años treinta1, surgió por
la necesidad de dar respuesta a este
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problema. Por tanto, el saber adquirido
puede verse como el producto de la
elaboración de la experiencia con la que
entra en contacto el sujeto que aprende. Y
esta elaboración consiste no sólo en la
interacción entre el individuo y su
ambiente, sino también en el modo como
aquél interioriza el mundo externo.
Independientemente de las peculiaridades
de tales actividades, el sujeto que aprende
debe comprometerse en algo que
necesariamente lo lleva a simbolizar. Esta
es una necesidad típicamente humana, ya
que es una elaboración (con
características internas o sociales, e
incluso ambas) organizada alrededor de o
en los sistemas semióticos de
representación.

Se puede agregar que el conocimiento es
la intervención y el uso de los signos. Así,
el mecanismo de producción y de uso,
subjetivo e intersubjetivo, de estos signos,
y el de la representación de los objetos de
la adquisición conceptual, resulta crucial
para el conocimiento.

Todo eso había sido ya previsto en el
programa de la epistemología
constructivista, enunciada por Piaget y
Garcia (1982), particularmente en el
capítulo IX. Al hablar sobre la experiencia
del niño, indican que las situaciones que
él encuentra son generadas por su entorno
social y los objetos aparecen situados en
contextos que les dan el significado
específico. Por tanto, este niño no asimila
objetos puros, sino las situaciones en las
cuales los objetos tienen roles específicos;
a medida que su sistema de comunicación
se hace más complejo, la experiencia
directa de los objetos queda subordinada
al sistema de interpretaciones suministrado
por el entorno social.

No hay duda de que el conocimiento en la
escuela y su aprendizaje como

construcción se hallan condicionados por
situaciones específicas de la institución.
Por ende, el aprender en la escuela ¡no es
el aprender total! Los problemas del
aprendizaje matemático en la escuela, aún
antes de ser de orden epistemológico,
pertenecen a un ambiente sociocultural.

Si aceptamos que todo conocimiento
(matemático, en particular) refleja al mismo
tiempo una dimensión social y una
personal, la escuela no es una excepción;
incluso, en ella queda institucionalizada
esa doble naturaleza. Durante el
aprendizaje de las matemáticas se
introduce a los estudiantes en un mundo
nuevo, tanto conceptual como simbólico –
sobre todo, representativo–, que no es fruto
de una construcción solitaria, sino de una
verdadera y compleja interacción con los
miembros de la microsociedad, de la cual
forma parte el sujeto que aprende: los
propios compañeros, los maestros y la
noosfera (a veces borrosa, otras evidente).

Es mediante un continuo debate social que
el sujeto que aprende toma conciencia del
conflicto entre conceptos espontáneos y
conceptos científicos. Así, enseñar no
consiste sólo en el intento de generalizar,
amplificar, volver más crítico el sentido
común de los estudiantes, sino se trata de
una acción más bien compleja, como nos
ha enseñado Vygotski en Pensamiento y
lenguaje (1962), cuando afirma que un
concepto es algo más que la suma de
ciertos vínculos asociativos formados por
la memoria, pues consiste en un auténtico
y complejo acto del pensamiento al que se
puede llegar sólo cuando el desarrollo
mental del niño ha alcanzado el nivel
requerido. Sin embargo, el desarrollo de
los conceptos presupone el de muchas
funciones intelectuales (atención, memoria
lógica, abstracción, capacidad de
comparación y diferenciación); la
experiencia ha demostrado que la
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enseñanza directa de los conceptos es
imposible y estéril.

En matemáticas, la asimilación conceptual
de un objeto pasa necesariamente a través
de la adquisición de una o más
representaciones semióticas (Chevallard,
1991; Duval, 1993, 1999; Godino y
Batanero, 1994), lo cual nos obliga a
aceptar la afirmación de Husserl, pero
centrada por Duval hacia la Didáctica de
la Matemática, que no existe noética sin
semiótica.

Como sugiere Duval, la construcción de los
conceptos matemáticos depende,
estrechamente, de la capacidad de usar
más registros de sus representaciones
semióticas:

•  De representarlos en un registro dado

•  De tratar tales representaciones en un
mismo registro

•  De convertir tales representaciones de
un registro dado a otro

El conjunto de estos tres elementos, al
igual que las consideraciones de los
párrafos anteriores, evidencian una
profunda relación entre noética y
constructivismo. Así, la construcción del
conocimiento en matemáticas se puede
pensar como la unión de tres acciones
sobre los conceptos: la expresión misma
de la capacidad de representar los
conceptos, de tratar las representaciones
obtenidas en un registro establecido y de
convertirlas de un registro a otro.

Todo esto constituye, en mi opinión, sólo
el punto de partida para especificar y
explicar históricamente la importancia que
la Didáctica de la Matemática reconoció a
los estudios sobre la semiótica, en el
momento en que ingresaron a su campo
de investigación. Hoy se prefiere seguir una
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vía de carácter no nominalista, que
podríamos llamar de pensamiento
entendido como praxis reflexiva sensorial-
intelectual, apoyada en sistemas
semióticos de significado cultural. Según
esta línea, trazada por Luis Radford, estos
sistemas semióticos, construidos
socialmente por los individuos a partir de
su realidad concreta, transformados
activamente de generación en generación,
“naturalizan” la realidad de los individuos,
enmarcan lo que se entiende por evidencia,
argumentos convincentes, demostraciones,
etc. y subtienden las reflexiones que los
individuos hacen de su mundo.

Pero, volvamos a la pregunta inicial. ¿Qué
dirección tomarán estos estudios en el
futuro? Podemos ver ya importantes
señales, que emergen en las páginas que
aquí quisimos recoger. Quizás una gran
influencia tendrán particularmente los
estudios sobre la comunicación, sobre las
acciones de las comunidades de práctica,
las reflexiones sobre la dimensión
ontogenética, así como la contribución de
análisis críticos de temas que han fundado
nuestra disciplina y que ya se delinean
como evoluciones de un futuro próximo.

En este número especial de la revista
Relime, reunimos a varios especialistas
con el fin de presentar el estado del arte
de las diversas tendencias que conforman,
actualmente, el estudio de la semiótica en
nuestro sector. Algunos de estos trabajos
contribuyen a dar una respuesta adecuada
a muchas de las preguntas precedentes.

La respuesta a la primera pregunta, ¿qué
es un concepto?, plantea problemas
teóricos. Seguir profundizando en ellos
parece ser un campo donde la semiótica
puede dar importantes resultados en un
futuro cercano. Varios textos aquí reunidos
sugieren que las respuestas a esta
pregunta, y a las que planteé en el curso
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de este artículo, deben incluir el aspecto
institucional (Godino y colaboradores),
pero también el contexto cultural (Radford,
Cantoral y colaboradores) y cognitivo
(Arzarello, Radford, Duval, Otte, Arzarello).

Es así como Godino y sus colaboradores
presentan una actividad concreta del EOS
en el análisis de textos escolares, en el cual
utilizan los criterios de idoneidad tanto
epistémica como cognitiva; un análisis de
este tipo puede tener repercusiones
profundas de carácter institucional.

Cantoral y sus colaboradores abordan la
socioepistemología, mediante la cual la
actividad matemática se sitúa en un
contexto cultural de práctica social.

Radford basa su aporte en la idea de praxis
reflexiva y expone una teoría cultural de la
objetivación. Tal propuesta tiene una doble
valencia: la cultural (de análisis crítico de
posiciones, en algunos casos ampliamente
compartidas) y la cognitiva.

Duval insiste en la importancia del análisis
semiótico complejo en el ámbito
matemático y cognitivo. Vuelve a los
orígenes de la semiótica con el fin de
sugerir motivaciones para el análisis de los
signos, así como de las relaciones de
semejanza, referencia, causalidad y
oposición. Esta modalidad de afrontar la
problemática es útil tanto para el desarrollo
de las matemáticas como para el análisis
de su aprendizaje.

Otte propone que la explicación es
consubstancial de la exhibición de signos
y sentido, ya que no hay diferencia entre
idea y símbolo a pesar de lo que sostienen
el idealismo filosófico y el mentalismo
cognitivista, lo cual ejemplifica al tratar el
tema de la demostración en matemáticas.

Arzarello muestra en primer lugar un
análisis crítico e histórico sobre la idea
misma de semiótica. Parte de su
fundamento teórico y propone diversas
interpretaciones y luego enfoca a la
semiótica como aproximación modal, que
también ofrece análisis de eventos
sucedidos en el aula.

La semiótica que nos interesa, de manera
específica, atañe al uso de signos y al
desarrollo conceptual en el salón de
clases. Muchos de los artículos aquí
reunidos atienden este aspecto.

Así, Koukkoufis y Williams emplean la
teoría de la objetivación para estudiar la
manera en que generalizan jóvenes
alumnos.

Adalira Sáenz-Ludlow enfoca su atención,
fuertemente teórica, en una idea muy
concreta, la de riqueza matemática del
alumno, y en la influencia de los maestros
en el discurso matemático.

Gagatsis y sus colaboradores dan a
conocer estudios críticos sobre los
cambios de representación de objetos
relacionados con el concepto de función.

Bagni ofrece un estudio experimental
hecho con alumnos de secundaria que
intentan dar sentido a frases paradójicas.

D’Amore propone un ejemplo de aula
donde se presenta un cambio de sentido
frente a diferentes representaciones del
mismo objeto, conseguidas por
tratamiento semiótico.

Este número especial de Relime se inspira
en las discusiones colectivas precedentes
que menciona Luis Radford en su
Introducción. Quiere ser una modesta
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contribución analítica y problemática al
tema de la semiótica en el ámbito de la
Educación Matemática.

Me agrego a los agradecimientos de Luis,
extendiéndolos a nuestros autores y a
todos los lectores.

Bruno D’Amore
Dipartimento di Matematica
Università di Bologna
Italia

E-mail: damore@dm.unibo.it
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SUGERENCIAS PARA LA PREPARACIÓN
DE ARTÍCULOS

En el caso de reportes de estudios
experimentales, de casos, de observación,
etnográficos, etcétera, recomendamos que los
escritos contengan:

1) Resumen del trabajo en no más de 10
renglones en español, y no más de 5
palabras clave. Todo esto, junto con el
título debe ser incluido con su traducción
al inglés, francés y portugués.

2) Una exposición del problema de
investigación (su pertinencia y relevancia
en el tema que se aborda).

3) Indicaciones globales acerca de la
estructura teórica del reporte.

4) Justificación de la metodología usada.

5) Desarrollo de algunos ejemplos y análisis
de resultados.

6) Referencias bibliográficas.

Si se trata de ensayos teóricos y filosóficos,
nuestra recomendación es la siguiente:

1) Iniciar con una exposición del problema
de investigación (su pertinencia y
relevancia en el tema que se aborda).

2) Ofrecer indicaciones sobre la estructura
teórica o filosófica en la cual se desarrolla
el tema del artículo.

3) Exposición detallada de la posición del
autor dentro del tema o los temas de
exposición.

4) Implicaciones o consecuencias de la
investigación en el área.

5) Incluir referencias bibliográficas.

Los artículos serán evaluados por tres
investigadores reconocidos y con experiencia
dentro del área. Específicamente se tomará
en cuenta la atención a los criterios anteriores,
así como a la claridad de la presentación e

interés para la comunidad de matemática
educativa.

GUÍA PARA LA PRESENTACIÓN DE
ARTÍCULOS

(Relime acepta artículos en español y en
portugués para su publicación)

Características de los artículos:

1)    Extensión máxima de 30 páginas a espacio
sencillo. En caso de que su propuesta
exceda esta extensión, el Comité de
Redacción podrá considerar la posibilidad
de publicarlo siempre que tal propuesta
no ocupe todo el espacio disponible en un
número de la revista; en otro caso, su
artículo será remitido para su conside-
ración en otra de las publicaciones del
Clame (libros, ensayos, etcétera).

2)    Todos los artículos deberán ser trabajos
inéditos de investigación. No se aceptarán
traducciones previamente publicadas en
su lengua original.

3)    Los trabajos deberán acompañarse de:

* Portada que indique el título del texto (no
mayor de ocho palabras), con su
traducción al inglés, francés y portugués,
nombre completo del autor y del centro
de adscripción.

* Sinopsis o resumen, no mayor de 10
renglones, que explique el tema, los
objetivos y la metodología del texto, que
plantee las conclusiones principales y que
incluya la traducción del resumen a fin
de que aparezca en castellano,
portugués, francés e inglés.

* Palabras clave, no más de 5 que recojan
las ideas centrales y su traducción al
inglés, francés y portugués.

* Datos generales del autor (notas curri-
culares, dirección, número telefónico
particular y laboral y de ser posible
número de fax y cuenta de correo
electrónico).
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4)    Se solicita a los autores enviar los trabajos
en CD o disquete para PC (3.5”) utilizando
el procesador de texto Word 6.0 o
superior, tipo de letra Times New Roman
y tamaño de 12 puntos. Para las
expresiones matemáticas se solicita usar
texto con el siguiente formato; las literales
en itálica, números y signos matemáticos
en letra normal, tal como se muestra en
el ejemplo:

f (x) = 3x + 1
       O bien, utilizar el editor de ecuaciones  de

Word, respetando el mismo formato.
Adicionalmente se enviarán cuatro copias
impresas del mismo trabajo, tres de las
cuales habrán de omitir los datos del autor.

5)   Con el propósito de facilitar el proceso de
publicación, los trabajos se escribirán de
la  siguiente manera:

* Usar márgenes de una pulgada (2.5
centímetros) en ambos lados de la
página tamaño carta.

*  Mecanografiar  o  imprimir de  un solo
lado del papel.

*  No usar sangrías.
* Colocar un solo espacio después de

punto y seguido.
* No usar guiones de separación de pa-

labras.
* Diferenciar bien los títulos de los

subtítulos.

* Las palabras, frases o señalamientos
especiales que se deseen destacar
llevarán cursivas o negrillas (no usar
subrayado).

* Bibliografía, referencias y notas: so-
licitamos emplear el estilo de la APA
(Publication Manual of the American
Psychological Association, 4th ed., 1994)
para las citas de pie, notas,     referencias
textuales y bibliografía.

Ejemplos:
Revista especializada:
Sepúlveda, G. (1989). El paradigma de la
educación actual. La Educación 104, 57-68.

Brousseau, G. (1980). Pròblemes de

l’enseignement des décimaux. Recherches en
Didactique des Mathématiques 1 (1), 11-59.

Revista de interés general (publicación
periódica ):

Vélez, E. (1984, mayo). Logros ocupa-cionales
del bachiller colombiano: El caso de la Cohorte
de 1978. Educación, Formación Profesional y
Empleo (pp. 167-194). Bogotá, Colombia:
SENA.

Libro:

Lakatos, I. (1977). Proofs and refutations, the
logic of mathematical discovery. Cambridge,
USA: Cambridge University Press.

Capítulo de libro:

Artigue, M. (1992). Functions from an algebraic
and graphic point of view: Cognitive difficulties
and teaching practice. En E. Dubinsky & G. Harel
(Eds.), The concept of function: aspects of
epistemology and pedagogy (pp. 109-132).
Washington, DC, EE. UU.: Mathematical
Association of America.

Dauben, J. (1984). El desarrollo de la teoría de
conjuntos cantoriana. En I. Grattan-Guinness
(Ed.), Del cálculo a la teoría de conjuntos, 1630-
1910. Una introducción histórica (pp. 235-282).
Madrid, España: Alianza Editorial. (Versión
original en inglés publicada en 1980).

Organizaciones y documentos:

UNESCO (1983). Anuario Estadístico. París:
UNESCO.

Memorias de Reuniones y Simposia:

Cantoral, R. (1995). Matemática, matemática
escolar y matemática educativa. En R. Farfán
(Ed.), Publicación de la Novena       Reunión
Centroamericana y del Caribe   sobre Formación
de Profesores e Inves-tigación  en Matemática
Educativa (volumen 1, pp. 1-10). La Habana,
Ministerio de Educación, Cuba: Cinvestav.

Tesis:
Flores,   R.   (1992).   Sobre la construcción del
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Referencia de texto:

Las referencias de texto irán al final de la
oración, frase o texto como se muestra en los
siguientes ejemplos:

* Una fuente con dos autores: (Gubar &
Hebin, 1980).

* Una fuente con más de tres autores:
(Agard et al., 1990).

* Una referencia a varios trabajos,
separarlas citas con punto y coma:
(Gómez, 1992; Cordero, 1995;  García,
1994).

Citas de Notas:

El formato para citar una fuente será en forma
de referencia de texto. Es posible incluir notas
al pie de página para proveer información
adicional de una referencia textual o aclarar
una idea del texto. Si se utilizan notas al pie
de página, el autor deberá colocarlas en la
parte inferior de la página de referencia. Si se
utilizan notas finales, se colocarán al final del
artículo siguiendo una numeración
ascendente.

Información complementaria

1)  No se devolverán los disquetes ni los
artículos originales.

2)   El editor se reserva el derecho de hacer
algunas modificaciones necesarias para
mantener el estilo de la publicación.

3)   Los  textos pueden ser publicados en    otro
órgano  editorial  previo  permiso expreso,
por escrito, y haciendo referencia explícita
de la fuente.

4)   Los autores recibirán gratuitamente 2
ejemplares del número en que se haya
publicado su artículo.

5)   No se realizarán pagos a los autores por
los artículos que se publiquen en RELIME.

Para mayores informes, puede visitar la
página  web : http://www.clame.org.mx/
relime.htm o bien el correo electrónico :

relime@clame.org.mx

concepto de convergencia en relación al
manejo heurístico de los criterios. Tesis de
maestría no publicada, Cinvestav, México.

Referencias Electrónicas

Publicación periódica en línea:

Candela, A. (1999). Prácticas discursivas en
el aula y calidad educativa. Revista Mexicana
de Investigación Educativa 4(8), 273-298.
Obtenido en junio 7, 2004, de http://
www.comie.org.mx/revista/Pdfs/Carpeta8/
8invest3.pdf

Documento en línea:

PISA (2003). Aprender para el mundo de
mañana: Resumen de resultados. Obtenido en
abril 4, 2005, de http://www.ince.mec.es/pub/
pisa2003resumenocde.pdf

Artículos de Internet basados en una fuen-
te impresa:

Parnafes, O. & Disessa, A. (2004). Relations
between types of reasoning and computational
representations. [Versión Electrónica]. Interna-
tional Journal of Computers for Mathematical
Learning 9(3), 251-280.

Documento sin fecha ni autor identificado:

Si el autor de un documento no está identifi-
cado, comience la referencia con el título del
documento:

Calculadoras y Educación (s.f.). Obtenido en
enero 12, 2000, de http://www.agapema.com/
period/dijo.htm

Documento disponible en la página web de
una Universidad o Departamento:

Chou, L., McClintock, R., Moretti, F., & Nix, D.
H. (1993). Technology and education: New
wine in new bottles: Choosing pasts and
imagining educational futures. Obtenido en
agosto 24, 2000, del sitio web de Columbia
University, Institute for Learning Technologies:
http://www.ilt.columbia.edu/publications/
papers/newwine1.html
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