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1. INTRODUCTION

Since the end of the 19th century, mathematics educators have made use of the history of 
mathematics in a variety of ways (Cajori, 1894; Zeuthen, 1902.) For instance, the history of 
mathematics has been used as a powerful tool to counter teachers’ and students’ widespread 
perception that mathematical truths and methods have never been disputed. The biographies 
of several mathematicians have been a source of motivation for students. By stressing how 
certain mathematical theories fl ourished in various countries, the diverse contributions of 
many cultures to contemporary mathematics become evident. Specialized study groups have 
emerged in the past years in educational circles. Two of these are the Commission INTER-
IREM Épistémologie et Histoire des Mathématiques in France, and the International Study 
Group on the Relations between the History and Pedagogy of Mathematics (HPM), which is an 
affi liate of the International Commission on Mathematical Instruction (ICMI). In addition, 
regular conferences are organized, such as the European Summer Universities on the History 
and the Epistemology in Mathematics Education (for proceedings see Lalande, Jaboeuf, & 
Nouazé, 1995; Lagarto, Vieira, & Veloso, 1996; Radelet-de-Grave, & Brichard, 2001; Fur-
inghetti, Kaijser, & Tzanakis, 2006). Concomitantly, an important number of books are now 
available to help teachers use the history of mathematics (e.g., Bekken, & Mosvold, 2003; 
Calinger, 1996; Chabert, Barbin, Guillemot, Michel-Pajus, Borowczyk, Djebbar, & Martz-
loff, 1994; Dhombres, Dahan-Dalmedico, Bkouche, Houzel, & Guillemot, 1987; Fauvel, & 
van Maanen, 2000; Katz, 2000; Reimer, & Reimer, 1995; Swetz, Fauvel, Bekken, Johansson, 
& Katz, 1995). Journals of mathematics education have published special issues on history in 
mathematics teaching (e.g., For the Learning of Mathematics, Mathematics in School, Math-
ematics Teacher, Mediterranean Journal for Research in Mathematics Education, Educational 
Studies in Mathematics).

Instead of offering an overview of the different domains where the pedagogical use of the 
history of mathematics is now ramifi ed, we want, in this chapter, to focus on something that 
Cajori (1894) initiated many years ago. That is, seeing history not only as a window from 
which to draw a better knowledge of the nature of mathematics but as a means of transform-
ing the teaching of the subject itself. The specifi city of this pedagogical use of history is 
that it interweaves our knowledge of past conceptual developments with the design of class-
room activities, the goal of which is to enhance the students’ development of mathematical 
thinking.
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Cajori’s 1894 ideas have led us to developments that he could not have suspected. Indeed, 
Cajori adopted a positivistic view of the formation of knowledge. He saw knowledge as an 
objective entity that grows gradually and cumulatively. His reading of the history of math-
ematics was framed by viewing history as an unfolding process guaranteed by the idea of 
progress—an idea underpinning the Enlightenment philosophy and attitudes toward life 
from which modern thought arose. Nonpositivistic views about the formation of knowledge 
were later elaborated by philosophers and epistemologists such as Bachelard (1986), Foucault 
(1966) and Piaget (1970), among others, and by anthropologists such as Durkheim (1968), 
Lévy-Bruhl (1928) and Lévi-Strauss (1962), to mention but a few. Bachelard presented an 
interpretation of the formation of knowledge in terms of ruptures and discontinuities. Piaget 
was interested in explaining genetic developments in terms of stages and the intellectual 
mechanisms allowing for the passage from one level to another. Foucault was opposed to the 
conception of history as a date-labeling practice and investigated the problem of the constitu-
tion of knowledge in terms of the conditions of its emergence, which he related to the differ-
ent spheres of human activity. Bachelard, Foucault, and Piaget had different goals, and thus 
their projects differed. But what is important for our discussion here is that, contrary to what 
Cajori and many other positivist thinkers believed, knowledge in general and mathematical 
knowledge in particular cannot be taken as an unproblematic concept. Behind any concept of 
knowledge there is an epistemological stance, and this epistemological stance conditions our 
understanding of the formation of students’ mathematical thinking, just as it conditions the 
interpretation of historical conceptual developments (Grugnetti, & Rogers, 2000; D’Amore, 
Radford, & Bagni, 2006; Radford, Boero, & Vasco, 2000). Nevertheless, the study of the 
development of students’ thinking and that of the conceptual development of mathematics 
belong to two different domains—the psychological and the historical, respectively. Each 
has its specifi c problems as well as the tools with which to investigate them. Students’ con-
ceptualizations can be investigated through classroom observations, interviews, tests, and so 
forth. The same cannot be done in the historical domain, where historical records are the 
only available material for study. The difference in methodology in both domains is, in fact, a 
token of more profound differences. These cannot be ignored in the context of a pedagogical 
use of the history of mathematics as a useful tool to enhance the development of students’ 
mathematical thinking. Despite their differences, the psychological and historical domains 
need to be weighed and articulated in a specifi c way (Fried, 2006; Schubring, 2000). One 
of today’s more controversial themes concerns the terms in which such an articulation must 
be understood. More specifi cally, the question is how to relate the development of students’ 
mathematical thinking to historical conceptual mathematical developments. Psychological 
recapitulation, which transposes the biological law of recapitulation, claims that, in their 
intellectual development, our students naturally traverse more or less the same stages as man-
kind once did. Very often, this law has been taken for granted (sometimes implicitly) to justify 
a link between both domains. In its different variants, however, psychological recapitulation 
has recently been subject to a deep revision, in part because of the emergence of new concep-
tions about the role of culture in the way we come to know and think. Schubring (2006) 
and Radford (1997a) have drawn attention to the role played by conceptions about history in 
shaping the view of the relation between biological and psychological recapitulation. Anglin 
(1992) and Grattan-Guinness (1993) have brought to light the issue of the nature of the his-
tory of mathematics and its relationship with mathematics. Rubin (2001) has discussed the 
problem of the teaching of history. The previous problems deserve due refl ection since their 
solutions may affect the use of the history of mathematics in teaching and the interpretation 
of didactical phenomena.

The purpose of this chapter is to discuss in some detail the basic problems referred to 
in this introduction. In the next section, we deal with psychological recapitulation and 
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 mention some of the current arguments against it. In section 3, we examine key ideas about 
ontogenesis and phylogenesis as found in the works of Piaget and Vygotsky. In section 4, 
we present some paradigmatic examples of mathematicians who commented on phylogen-
esis and its relation to ontogenesis. Section 5 focuses on a particular interpretation of the 
recapitulation law that led to the so-called “genetic approach,” which has had a considerable 
impact on early mathematics education. In section 6, we discuss some episodes that sug-
gest an oblique connection between historical conceptual developments and the learning of 
mathematics in the classroom. These examples therefore run counter to Cajori’s positivist 
view of knowledge and its recapitulation. Section 7 provides a brief account of a few cur-
rent approaches in contemporary mathematics education that relate to the history of math-
ematics regarding either theoretical or practical links between the development of students’ 
mathematical thinking and historical conceptual developments. In the last section, we offer 
a critical assessment of the law of recapitulation and recommend ideas for conceptual and 
applied research in the 21st century regarding historical and ontogenetic developments in 
mathematics education.

2. FROM BIOLOGICAL TO PSYCHOLOGICAL RECAPITULATION

The way in which people perceived psychological recapitulation at the beginning of the 20th 
century was linked to the way they perceived themselves in the overall view of the world. As 
long as humans thought of themselves as essentially different from animals and plants, no 
relation in terms of ancestry between the human and animal kingdoms could be advocated. 
Thus, in the early 18th century, a common scholarly view to explain the origin of species and 
to understand the formation of living things was—as indicated in Genesis (see, e.g., Osborn, 
1929)—that species came from those beings fortunate enough to survive the deluge by fi nd-
ing refuge on Noah’s ark. But with the appearance of the early 19th-century philosophy of 
nature, humans came to join the greater kingdom of species.

In their broader sense, however, recapitulationist ideas date back to the pre-Socratic think-
ers. They did not state them in terms of a condensed process of lower life that culminates with 
humans. Often their reference point was the cosmos. Thus, Empedocles believed that the 
growth of the embryo echoes, in a foreshortened way, the cosmogonic process: The embryo 
is submerged into amniotic fl uid, which evokes the originally fl uid earth (de Santillana, 1961, 
p. 114).

During the 18th and early 19th centuries, a vigorous debate separated two opposing schools 
with regard to the concept of recapitulation. One of them, which became known as pre-for-
mation theory, stated that ontogenesis was the unfolding or growing of preformed structures, 
whereas the other school adopted a more dynamic stance, arguing that the embryo was nei-
ther the exact miniature of the developed species nor the unfolding of preformed structures, 
but a being in a state of development. The “causes” at the origin of the embryo’s unfolding 
or changes were variously interpreted. Charles Bonnet (1720–1793), usually recognized as 
one of the leaders of the preformationists, saw change as coming from an affectionate God 
who had ordered the world according to increasing perfection and progress. Whereas in the 
early 19th century Naturphilosophen were attributing development to a “natural” fi nal cause, 
Lamarck and Darwin envisioned a new theory that replaced the philosophical idea of fi nal 
cause with an effi cient cause - individual development. (For a detailed discussion of the ideas 
of the preformationists and Naturphilosophen, see Gould, 1977.) Indeed, from the mid-19th 
century onward, the “causes” were seen in the context of the theory of evolution. “Heredity 
and adaptation are, in fact, the two constructive physiological functions of living things,” 
wrote Haeckel (1912, p. 6), who, in one of the most famous statements ever made in the realm 
of anthropogenesis (which he called the fundamental law of biogeny), declared that
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The series of forms through which the individual organism passes during its development 
from the ovum to the complete bodily structure is a brief, condensed repetition of the 
long series of forms which the animal ancestors of the said organism, or the ancestral 
forms of the species, have passed through from the earliest period of organic life down to 
the present day. (pp. 2–3)

Haeckel’s law was more than the simple statement of a condensed repetition of steps. What he 
was suggesting was that the embryos of men and dogs, at a certain stage of their development, 
are almost indistinguishable. Indeed, to take one of Haeckel’s favorite examples, “the human 
gill slits are (literally) the adult features of an ancestor” (Gould, 1977, p. 7).

How, then, was the discussion about the biological growth of humans transferred to the 
psychological domain? It was Haeckel who, after discussing the nervous system, said, “we are 
enabled, by this story of the evolution of the nervous system, to understand at length the natu-
ral development of the human mind and its gradual unfolding” (1912, p. 8, italics as in the 
original). A sharper formulation was the following: “the psychic development of the child is but 
a brief repetition of the phylogenetic evolution” (Haeckel quoted by Mengal, 1993, p. 94).

The adoption of the psychological version of biological recapitulation served as a general 
framework for conceiving the functioning of the child psyche as something traveling along 
the same path as his or her ancestors. For instance, the child was seen as behaving as humans 
in previous stages of the chain of evolution (e.g., such as having, in an early stage of his or 
her development, an “animist” view of nature, that is, that immaterial forces animate the 
universe).

Psychological recapitulation endorses a peculiar view of history and development. Con-
cerning development, for Bonnet and the preformists, there was no actual development, 
strictly speaking, but only growing or unfolding. Environment could not alter the pre-formed 
structures and their growth. For evolutionary-based recapitulation theories, in contrast, the 
environment is supposed to play a role in the development of species. The individual is seen 
as an organism adapting to his or her environment; in the interplay between individual and 
environment, some biological and psychological functions may develop, whereas others may 
be lost according to natural selection.

As for history, in contrast to views that conceived of a world that underwent different 
creations, Bonnet saw the world as created at one time, with its whole history encapsulated 
within it. History was therefore the unfolding of a predetermined plan. The concept of history 
was much more problematic for recapitulationists. Indeed, from a theoretical point of view, 
history and recapitulation become diffi cult to reconcile because, on one hand, Haeckel’s psy-
chological recapitulation supposes that present intellectual developments are to some extent a 
condensed version of those of the past. On the other hand, natural selection is presented as a 
function of the environment against which individuals act. For recapitulation to be possible, 
therefore, such an environment must remain essentially the same, which obviously is not the 
case. Given that the environment changes, it becomes diffi cult to maintain that children’s 
intellectual development will undergo the same process as the one experienced by children 
in the past. The variability that natural selection imposes on the course of events in history 
confl icts with the idea of recapitulation as a condensed repetition of some intellectual aspects 
registered in past history. Indeed, this point was recognized as a weakness (see, e.g., Gould’s 
(1979) Lamarckian remarks). Werner (1957), for instance, advocated contextual factors and 
argued that it is impossible to equate a given intellectual stage of a child in a modern society 
to the stage an adult could have reached in a ancient society because the respective environ-
ments, as well as the genetic processes involved in them, are completely different (see Radford, 
1997a). Elias also mentioned the differences that necessarily result as a consequence of varia-
tions in cultural settings. Whereas in “traditional” societies children participate directly in 
the life of adults earlier and their learning is done in situ (as apprentices), “modern”  children 
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are instructed indirectly in mediating institutions, or schools (Elias, 1991, pp. 66–67). Con-
sider memory, an example that is addressed neither by Werner nor Elias but which conve-
niently clarifi es the previous ideas. As many anthropological accounts clearly show (see, e.g., 
Lévy-Bruhl, 1928), memory plays a central role in illiterate societies. In contrast, sign systems 
related to writing in literate societies dispense with memory to a certain and fundamen-
tal extent. They create a different way to handle and distribute knowledge and information 
between the members of the society and shape attitudes about how to scrutinize the future 
(see Lotman, 1990).

The theoretical diffi culties encompassing the crude version of psychological recapitulation 
encouraged new refl ections with the goal of fi nding more suitable explanations concerning 
the relationship between phylogenesis and ontogenesis. Contemporary societies organize the 
mobilization of knowledge in such a way that their individuals are faced with a quicker discov-
ery of ontogenetic objects. The advent of technology, like, for instance, in dynamic geometry 
environments, provides a clear example of these ideas (see Moreno & Sriraman, 2005). In the 
next section, we will discuss two different views that have been infl uential on the use of his-
tory in mathematics education.

3. PIAGET AND VYGOTSKY ON ONTOGENESIS 
AND PHYLOGENESIS

Piaget was interested in understanding the process of the formation of knowledge. To do 
so, he considered knowledge as something that can be described in terms of levels. One of 
his aims was to describe those levels, as well as the passage from one level to a more complex 
one. He said, “The study of such transformations of knowledge, the progressive adjust-
ment of knowledge, is what I call genetic epistemology” (Piaget cited in Bringuier, 1980, p. 
7). As a reaction to the simplistic psychological version of recapitulation and the positivist 
view of knowledge that we mentioned in the introduction, Piaget and Garcia elaborated the 
concept of genetic development. They envisioned the problem of knowledge in terms of the 
intellectual instruments and mechanisms allowing its acquisition. According to Piaget and 
Garcia, the fi rst of those mechanisms is a general process that accounts for the individual’s 
assimilation and integration of what is new on the basis of his or her previous knowledge. 
In addition to the assimilation mechanism, they identifi ed a second mechanism, a process 
that leads from the intraobject, or analysis of objects, to the interobject, or analysis of the 
transformations and relations of objects, to the transobject, or construction of structures. 
This epistemological viewpoint led them to revisit the parallelism that recapitulationists had 
emphasized. Therefore, Piaget concluded, “We mustn’t exaggerate the parallel between his-
tory and the individual development, but in broad outline there certainly are stages that are 
the same” (Bringuier, 1980, p. 48). The two mechanisms were hence considered as invari-
able, not only in time but also in space. That is, we do not have to specify what they are in 
a certain geographical space at a particular time because they do not change from place to 
place or from time to time. They are exactly the same, regardless of the period in history and 
the place of the individuals.

In modern mathematics, at the level of algebraic geometry, of quantum mechan-
ics, although it’s a much higher level of abstraction, you fi nd the same mechanisms in 
action—the processes of the development of knowledge or the cognitive system are con-
structed according to the same kinds of evolutionary laws. (Garcia in Bringuier, 1980, 
pp. 101–102)

Thus, when Piaget and Garcia investigated the relationship between ontogenesis and phylo-
genesis, they did not seek a parallelism of contents between historical and psychogenetical 
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developments but of the mechanisms of the passage from one historical period to the next. 
They tried to show that those mechanisms are analogous to those of the passage from one 
psychogenetic stage to the next.

The two mechanisms of passage discussed by Piaget and Garcia have a different theoretical 
background. The second, that of the intra-, inter- and transobjectual relations, obeys a struc-
tural conception of knowledge and refl ects the role that mathematical and scientifi c thinking 
played in Piaget’s work. As Walkerdine noted, “In the work of Piaget, an evolutionary model 
was used in which scientifi c and mathematical reasoning were understood as the pinnacle of 
an evolutionary process of adaptation” (Walkerdine, 1997, p. 59). The fi rst one, the assimi-
lation mechanism, has its roots in the conception of knowledge as the prolongation of the 
biological nature of individuals: “The human mind is a product of biological organization, a 
refi ned and superior product, but still a product like another” (Piaget in Bringuier, 1980, p. 
108).

Both intellectual mechanisms of knowledge development embody a general conception of 
rationality that has been contested by some critics who fi nd that what is missing, among other 
things, is a more vivid role for culture and social practices in the formation of knowledge. For 
instance, the epistemologist Wartofsky, who has stressed an intimate link between knowledge 
and the activities from which knowledge arises and is used, said:

We are, in effect, the products of our own activity, in this way; we transform our own per-
ceptual and cognitive modes, our ways of seeing and of understanding, by means of the 
representations we make.... […] Piaget’s dynamic, or genetic structuralism is important 
here, of course. His dictum, “no genesis without structure, no structure without gen-
esis,” suggests the dialectical interplay of the practical emergence and transformation of 
structures with the shaping of our experience and thought by structures. But the domain 
of this genesis I take to be the context of our social, cultural and scientifi c practice, and 
not that of biological species-evolution alone.... In a sense, then, our ways of knowing are 
themselves artifacts which we our-selves have created and changed, using the raw materi-
als of our biological inheritance. (Wartofsky, 1979, p. xxiii)

Vygotsky, in many writings, dealt with the problem of recapitulation and, like Piaget, 
believed that the understanding of ontogenesis and phylogenesis had to be based on a deep 
understanding of our biological nature. (This is clear, for instance, in his book Speech and 
Thinking, as well as in the infl uence he had on his student Luria and the huge amount of 
physiological research that the latter conducted. See, e.g., Luria, 1966.) Instead of posing 
the problem of the formation of knowledge in terms of universal and atemporal mechanisms 
functioning beyond culture, however, he saw the cognitive functions allowing the produc-
tion of knowledge as inevitably overlapping with the context in which individuals act and 
live. His basic distinction between lower and higher mental functions is reinforced by the 
idea that the former belong to the sphere of the biological structure, whereas the latter are 
intrinsically social. Thus, in a passage from Tool and Symbol in Child Development, when 
discussing the problem of the history of the higher psychological functions, Vygotsky and 
Luria commented:

Within this general process of development two qualitatively original main lines can 
already be distinguished: the line of biological formation of elementary processes and 
the line of the socio-cultural formation of the higher psychological functions; the real 
history of child behaviour is born from the interweaving of these two lines. (Vygotsky, 
& Luria, 1994, p. 148)

The merging of the natural and the sociocultural lines of development in the intellectual 
development of the child defi nitely precludes any recapitulation:
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In the development of the child, two types of mental development are represented (not 
repeated) which we fi nd in an isolated form in phylogenesis: biological and historical, or 
natural and cultural development of behavior. In ontogenesis both processes have their 
analogs (not parallels).... By this, we do not mean to say that ontogenesis in any form 
or degree repeats or produces phylogenesis or is its parallel. We have in mind something 
completely different which only by lazy thinking could be taken to be a return to the 
reasoning of biogenetic law. (Vygotsky, 1997, p. 19)

For Vygotsky even the elementary intellectual functions of the individual are intrinsically 
human, acquired through the activities and actions on which the intercourse between indi-
viduals and between people and objects are based. One of the central reasons for this is that 
human activities are mediated by diverse kinds of tools, artifacts, languages and other systems 
of signs which, Vygotsky argued, are a constitutive part of our cognitive functions. Most 
important, these systems of signs, as well as tools and artifacts, are much more than technical 
aids: They modify our cognitive functioning (for a discussion of this point, see Bartolini-
Bussi & Mariotti’s, chapter 28, this volume). The knowledge produced by individuals hence 
becomes intimately related to the activities out of which knowledge arises and the conceptual 
and material “cultural tool kit” (to borrow Bruner’s expression, see Bruner, 1990) with which 
individuals are equipped. Of course, this does not mean that with every new generation, 
all knowledge must be constructed anew. As Tulviste (1991) noted, whereas rats are still 
doing what they did centuries ago, humans have, from one generation to the next, acquired, 
produced, and passed on their knowledge. During this process, humans have changed their 
activities and the way in which they think about the world. In Vygotsky’s view, knowledge 
appears as a creative individual and social reappropriation and coconstruction carried out 
using conceptual and material tools that culture makes available to its individuals. In turn, in 
the course of this process, the previous tools and signs may become modifi ed and new ones 
may be created. It is in this sense that tools and concepts have embodied the social charac-
teristics from which they arose, and their insertion into other activities allows for their trans-
formation and eventually their growth. Because activities, sign use, and attitudes toward the 
meaning of scientifi c inquiry do not necessarily remain the same throughout time, changes 
are effected along phylogenetic lines (and the plural, “lines,” needs to be emphasized here) 
serving as the historico-cultural starting point for new genetic developments. Epistemologi-
cal refl ections have then to evidence the relation between cognitive context and action. As 
Wartofsky pointed out:

If, in fact, our modes of cognitive practice change with changes in our modes of produc-
tion, of social organization, of technology and technique, then the connection between 
cognition and action, between theoretical and applied practice, between consciousness 
and conduct, has to be shown. (Wartofsky, 1979, p. xxii)

One implication of the previous remarks for the use of the history of mathematics in educa-
tion is that the study of recapitulation can be advantageously replaced by the contextual study 
of the social elements in which the historical geneses of concepts are subsumed. A prerequi-
site for doing this seems to be a clearer understanding of what the anthropologist L. White 
refers to as the locus of mathematical reality and summarizes by saying that “mathematics in 
its entirety, its ‘truths’ and its ‘realities’, is a part of human culture, nothing more” (White, 
2006, p. 307). In this line of thought, the contextual study of the social elements in which 
the historical geneses of concepts are subsumed can be accomplished through a careful inves-
tigation of the cultural symbolic webs shaping the form and content of scientifi c inquiry and 
the ways in which mathematical concepts are semiotically represented (Radford, 1997a, 1998, 
2000a, 2003a, 2003b, 2006a, 2006b). We return to this point in section 7.
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4. INTERPRETATION OF RECAPITULATION 
LAW BY MATHEMATICIANS

During the period when the treatises of Zeuthen and Cajori appeared, the history of math-
ematics was growing as a scientifi c discipline. The fi rst journals dealing exclusively with the 
history of mathematics were appearing at that time. We have extensive evidence that mathe-
maticians were looking at the history of mathematics with great interest for two main reasons. 
The fi rst one was functional to scientifi c research in general: the history of a given theory was 
considered a model inspiring and supporting further studies in the fi eld. In mathematics, the 
much quoted motto by Abel, “Learn from the masters!” echoes this conviction, as well as the 
following passage by Eugenio Beltrami, a mathematician well known for his model of a non-
Euclidean geometry (see Clebsch, 1873, p. 153, our translation):

Students should learn to study at an early stage the great works of the great masters 
instead of making their minds sterile through the everlasting exercises of college, which 
are of no use whatever, except to produce a new Arcadia where indolence is veiled under 
the form of useless activity.

The second reason why the mathematicians were looking at the history with great interest was 
linked to the developments of mathematical research in those years, when axiomatization and 
the foundational works were undertaken. These themes were turning mathematicians’ atten-
tion to refl ections on the nature of mathematics and on the activity of doing mathematics. 
The history of mathematics was considered a fi eld that offered inspiration for discussing these 
kinds of problems. In this context, we will consider some interpretations of recapitulation law 
made by important mathematicians.

In the fi rst issue (1899) of L’Enseignement Mathématique, an important journal devoted 
to the teaching of mathematics, the eminent mathematician Henri Poincaré clearly stated his 
position on the relations between conceptual and historical developments:

Without a doubt, it is diffi cult for a teacher to teach a reasoning that does not satisfy him 
completely.... But the teacher’s satisfaction is not the sole purpose of teaching... above all 
one should be concerned with the student’s mind and of what we want him to become.

Zoologists claim that the embryonal development of animals summarizes in a very 
short time all the history of its ancestors of geologic epochs. It seems that the same hap-
pens to the mind’s development. The educators’ task is to make children follow the path 
that was followed by their fathers, passing quickly through certain stages without elimi-
nating any of them. In this way, the history of sciences has to be our guide. (Poincaré, 
1899, p. 159; our translation)

Poincaré gave examples of concepts to be taught at an intuitive stage before presenting them 
rigorously. Among these examples were fractions, continuity and area. As far as we know, 
Poincaré never used his ideas on the effi cacy of recapitulation law directly with teachers. This 
makes Poincaré’s position different from that of Felix Klein, another supporter of the use of 
the history of mathematics in teaching. In contrast, Klein applied his ideas in courses for pro-
spective teachers and in related texts that he wrote.

Klein supported the German translation of the famous book A Study of Mathematical 
Education by Benchara Branford (1921) in which, according to Fauvel (1991, p. 3), the theory 
of recapitulation “reached its apogee.” This can be considered evidence of Klein’s agreement 
with the recapitulation law (Fauvel, 1991, p. 3). Nevertheless, from what Klein wrote in his 
articles and books (see Klein, 1924), we understand that the application of the law was not 
advocated in a literal sense. As in the case of Poincaré, his opinion on the use of history was 
born of his wish to abolish the use of mathematical logic and the excesses of rigor advocated 
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by some of his colleagues. Klein was interested in the dichotomy of “intuition versus rigor” 
and, as far as school is concerned, was in favor of intuition. He singled out the history of 
mathematics as being the suitable context for bringing intuition back into the teaching and 
learning process:

I maintain that mathematical intuition ... is always far in advance of logical reasoning 
and covers a wider fi eld.... I might now introduce a historical excursus, showing that in 
the development of most of the branches of our science [mathematics], intuition was the 
starting point, while logical treatment followed. This holds in fact, not only of the ori-
gin of the infi nitesimal calculus as a whole [this issue was discussed at the beginning of 
Klein’s paper] but also of many subjects that have come into existence only in the present 
[19th] century. (Klein, 1896, p. 246)

Klein claimed that in school, as well as in research, the phase of formalization must be pre-
ceded by a phase of exploration based on intuition.

We fi nd an analogous statement in a secondary school geometry book written by the 
famous Italian mathematician, Francesco Severi, which clearly refers to school practice:

We need to take inspiration from the principle that in learning new notions, the mind 
tends to follow a process analogous to that according to which science has developed. 
One who is aware of the value of foundation theories [in Italian, critica dei principi] does 
not make the dangerous mistake of giving to elementary teaching a critical and exces-
sively abstract style. It is necessary to know foundation theories for personal intellectual 
maturity; but in elementary teaching they are not to be considered as a pedagogical 
means. (Severi, 1930, p. IX; our translation)

Both Klein and Severi do not clearly state what “intuition” means for them, but both state 
what intuition is opposed to: rigor, excessive abstraction and formal logic used at the begin-
ning of the presentation of a mathematical notion. (It may be interesting to note that Severi, 
famous during the fi rst half of the 20th century, is one of the scholars of the Italian school 
of algebraic geometry who based his results on intuition to such a degree that these were 
published without being carefully verifi ed by a mathematical proof, as reported by Hanna 
(1996).

An explicit reference to the recapitulation problems was made by Thom (1973) in his ple-
nary talk delivered in 1972 at the second ICME congress in Exeter.

Pedagogy must strive to recreate (according to Haeckel’s law of recapitulation—onto-
genesis recapitulates phylogenesis) the fundamental experiences which, from the dawn of 
historical time, have given rise to mathematical entities. Of course this is not easy, for one 
must forget all the cultural elaborations (of which axiomatics is the last) which have been 
deposited on these mathematical objects, in order to restore their original freshness. One 
must forget culture in order to return to nature. (p. 206)

Behind this claim lay the rise of modern mathematics and the stormy quarrels between the 
supporters of its introduction in the school and those who were afraid of the dangers that 
would come of such a step.

5. THE GENETIC APPROACH

Using the history of mathematics in teaching does not necessarily entail a direct assumption 
of the recapitulation law; it also may be used in the so-called genetic approach to teaching. The 
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term “genetic” is an ambiguous one because it is used with different meanings. In particular, 
in the foundation literature, the term genetic method is used in contrast to axiomatic method. 
David Hilbert probably introduced this term, which was popularized by Edward V. Hunting-
ton. Before Hilbert, we fi nd other uses of the word “genetic.” Immanuel Kant stated that all 
mathematical defi nitions are genetic; after Kant, the term “genetic defi nition” is present in 
all major treatises on logic.

In addition to its use among mathematicians and philosophers, we fi nd the word “genetic” 
in other fi elds of research. Piaget and Garcia used it in their epistemological studies. As 
for mathematics education, Ed Dubinsky, who dealt with genetic decomposition, used the 
word.

Here we are concerned with the word “genetic” as it is used in connection with history. 
In the 1920s, the idea of a genetic principle was taking shape, as evidenced by the work of N. 
A. Izvolsky.2

Gusev and Safuanov (2000) reported Izvolsk’s complaints against traditional teachers and 
textbooks on the grounds of their legendary indifference to explanations about the origins of 
geometrical theorems. Izvolsky argued that when attempts to link knowledge to its histori-
cal roots are made, students see geometry in a different way. Moreover, students themselves 
sometimes guess that a given theorem was not originated by a mere wish on the part of the 
teacher or the authors of the textbook, but by questions which arose in previous tasks. It so 
happens that students try to imagine the origin of a theorem. According to Izvolsky, even if 
their hypotheses are not correct from a historical point of view, this approach to the teaching 
of geometry is valuable (Gusev, & Safuanov, 2000, p. 22).

The idea of a genetic approach later took a defi nite form in a work by Otto Toeplitz which 
he wrote to describe a method of presenting analysis to university students.3 The following 
passage from (Toeplitz, 1963) illustrates the ideas underlying the genetic method:

Regarding all these basic topics in infi nitesimal calculus which we teach today as canoni-
cal requisites, e.g., mean-value theorem, Taylor series, the concept of convergence, the 
defi nite integral, and the differential quotient itself, the question is never raised “Why 
so?” or “How does one arrive at them?” Yet all these matters must at one time have been 
goals of an urgent quest, answers to burning questions, at the time, namely, when they 
were created. If we were to go back to the origins of these ideas, they would lose that dead 
appearance of cut and dried facts and instead take on fresh and vibrant life again.4

Burn (1999) explained Toeplitz’s ideas in the following way:

The question which Toeplitz was addressing was the question of how to remain rigor-
ous in one’s mathematical exposition and the teaching structure while at the same time 
unpacking a deductive presentation far enough to let a learner meet the ideas in a devel-
opmental sequence and not just in a logical sequence. While the genetic method depends 
on careful historical scholarship it is not itself the study of history. For it is selective in its 
choice of history, and it uses modern symbolism and terminology (which of course have 
their own genesis) without restraint. (Burn, 1999, p. 8)

It is not by chance that this alternative approach developed in the domain of teaching calculus. 
It is in this domain that the notion that learning mathematics takes place in a sequence pre-
determined by mathematical logic has shown its pedagogical limitations. Indeed, when orga-
nized around their logical basis, the defi nitions of the main concepts of calculus (integrals, 
limits, derivatives) are abstract, and therein lies the burden of formal rules and theorems. 
Students have diffi culty grasping the corresponding meanings. At present there are projects 
(not based on history) that take these diffi culties into account and organize the teaching of 
calculus according to different patterns. An example is the Harvard project based on giving 
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an informal, operative approach to concepts (see Hughes-Hallett et al., 2005). Since his early 
studies on the teaching/learning of calculus, Tall has followed a similar approach, strongly 
supported by information technology (see Tall, 2003.)

What Toeplitz (1963) proposed is realistic and may be considered a compromise between 
the two ways of thinking about teaching mathematics, the logical versus the developmental. 
The goal of Toeplitz’s historically based approach was to provide a progressive process of 
understanding that the student performs through a sequence of steps. Because Toeplitz’s aim 
was to provide teaching materials that facilitate the learning of calculus, the main concern of 
the author was not to teach history, but to fi nd learning sequences. Burn (1993, 1999, 2005) 
elaborated on these ideas. Through his work he is sustained by the view “that learning or 
growth in mathematics consists of a transition from experience of the particular, through pat-
tern recognition or problem-solving, to perception of a generic” (Burn, 2005, p. 269). The 
historical development is suitable to his purpose

not because history is an infallible guide to student development today, but because 
where current psychological research does not map out a path consonant with student 
intuitions, historical enquiry can reveal actual steps of success in learning. There is no 
attempt in this paper to rewrite history, only a desire to use history to identify possible 
developmental steps. (Burn, 2005, p. 271)

Like in Toeplitz’s work, the presentation of historical materials is not shaped according to 
recapitulationist principles because it uses modern symbols, verbal expressions and cultural 
tools that are different from those of past authors.

An older example of the use of the genetic method (intertwined with a naïve heuristic 
approach) is in the treatise on geometry by Alexis-Claude Clairaut (1771). The preface of his 
book is an early example of predidactic literature (see Barbin, 1991). He wrote:

Even if geometry is abstract in itself, we nonetheless must agree that the diffi culties suf-
fered by beginners come mostly from the way it is taught in usual treatises. They always 
start with a great deal of defi nitions, questions, axioms, and preliminary principles, which 
only seem to promise dry issues for readers.... To avoid this dry quality that is naturally 
linked to the study of geometry, some authors put examples after each proposition to 
show it is possible to do them; but in this way, they only prove the usefulness of geom-
etry without making it any easier to learn. Because each proposition is presented before 
its use, the mind reaches concrete ideas after having toiled with abstract ideas. Having 
realized this fact, I intended to fi nd out what may have given birth to geometry and tried 
to explain principles with the most natural methods, which I suppose were adopted by 
the fi rst inventors, while trying to avoid the wrong attempts they had necessarily made. 
(Clairaut, 1771, pp. 2–4; our translation)

According to Glaeser (1983), Clairaut contributed greatly to the introduction of the genetic 
method. Glaeser commented on Clairaut’s work with the following observations: “Having 
given up both dogmatic exposition, and the following of the true historical development 
of discovery, this method consists in imagining a road that learned peoples ‘could have fol-
lowed!’ Thus this is pedagogy-fi ction” (Glaeser, 1983, p. 341, our translation). If we com-
pare the passage from Toeplitz’s book and Clairaut’s passage, we see a strong coincidence of 
intentions and didactic observations (i.e., the common idea of the “dryness” of mathematical 
content from the learner’s perspective).

Toeplitz’s work on the genetic method was probably rediscovered some decades later, as 
observed by Kronfellner (2002), because of the need to create a counter-current to the New 
Mathematics movement and its focus on rigor.
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Freudenthal (1973) provided an interpretation of the genetic method through his method 
of “guided reinvention:”

Urging that ideas are taught genetically does not mean that they should be presented in 
the order in which they arose, not even with all the deadlocks closed and all the detours 
cut out. What the blind invented and discovered, the sighted afterwards can tell how it 
should have been discovered if there had been teachers who had known what we know 
now.... It is not the historical footprints of the inventor we should follow but an improved 
and better guided course of history. (Freudenthal, 1973, pp. 101, 103; our italics)

An example of application based on Freudenthal is provided by the project Reinvention of 
Algebra, which uses “informal, pre-algebraic methods of reasoning and symbolizing as a way 
to facilitate the transition from an arithmetical to an algebraic mode of problem solving” (see 
Von Amerom, 2001, p. 239).

All in all, the genetic approach continues to be used in recent research (see e.g., Farmaki & 
Paschos, 2007; see also Törner & Sriraman, 2005), refl ecting, one way or another, the view 
that mathematical knowledge has a history and that its appropriation by the students entails 
a genetic process, a process that requires the students’ active engagement with the objects of 
knowledge.

6. UNPACKING A HISTORICALLY AND CULTURALLY 
CONSTRUCTED KNOWLEDGE: EPISODES IN THE CLASSROOM

In our previous chapter on recapitulation (see Furinghetti, & Radford, 2002, p. 642), we 
reported the claims made by teachers who were required to express their opinions about the 
potential benefi ts of using the history of mathematics in teaching:

The students’ development of concepts follows the historical sequence, 
The historical genesis of the concept may help teachers understand the genesis of the con-
cept in students’ minds,
If I present the students with how algebra developed in history, they feel differently about 
their diffi culties in learning it. 

These claims are paradigmatic of three ways in which teachers look at history in the teaching 
of mathematics. The third claim refers to what we may term the “consoling” function of his-
tory that is epitomized by the following sentence written by a teacher describing his work on 
medieval problems about probability (see Paola, 1998, for a fuller account): “The incursion 
into history had the goal of giving dignity to the mistake made by students [in solving a prob-
lem of probability solved also by Luca Pacioli]: it was not a trivial mistake if a mathematician 
made it” (p. 33).

The fi rst and the second claims echo the idea of parallelism and deserve further discus-
sion from the perspective of recapitulation theory. One main origin of these claims stems 
from the way teachers get in touch with the history of mathematics. Usually they do not read 
primary sources and their knowledge of history comes from manuals about the history of 
mathematics or university courses. These sources of historical knowledge may convey a view 
of the development of mathematics focused on the fi nal result of the development, that is, 
on a polished theory in which attempts and failures have been dropped as steps deprived of 
knowledge value. Borrowing the metaphor quoted in Pizzamiglio (1999) we may say that 
this mode of viewing mathematical development echoes theatrical tragedy: it encompasses 
the inexorability of a consequential order, as that pursued in a systemic exposition of knowl-
edge. This opposes a genre like epic poetry where all possible results as well as the complex 

•
•

•
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and contended  realizations of some of them are considered. In the courses for prospective 
teachers described in Furinghetti (2007), we encouraged the participants to use the history 
of mathematics to produce teaching sequences. We found two modes working for teachers: 
the evolutionary and the situated. The fi rst mode was mainly observed in those who rely on 
historical manuals: the participants were inclined to identify the elements that made a certain 
stream of thinking dominant and their teaching sequences focused on the polished theory. 
The other mode affecting prospective teachers’ products was brought out mainly by reading 
original passages from selected historical authors. Understanding was focused on the histori-
cal context and the focus was on the roots of concepts.

Other reasons for the idea of parallelism hinted at by the teachers’ answers come from 
refl ections on their own experience in the classroom. Von Amerom (2001, p. 239), in her 
comment about the work on reinventing algebra, observed that “knowledge of the histori-
cal development of algebra has led to a sharper analysis of student work and the discovery of 
certain parallels between contemporary and historical methods of symbolizing.” Not only 
teachers, but also researchers, have intimated possible connections between historical devel-
opments and students’ ways of approaching concepts, in particular, as far as students’ dif-
fi culties and mistakes are concerned (see Bagni 2000a, 2000b, 2005, 2006; Dubinsky et al. 
2005a, 2005b; McGinn & Boote, 2003)

In the following, we report episodes from the classroom that could contribute to raising 
teachers’ perceptions of oblique connections between historical and contemporary conceptu-
alization. As we shall see, these connections cannot be seen as a form of recapitulative paral-
lelism but rather as a kind of unpacking of a historically and culturally constructed knowledge 
(Radford, & Puig, 2007).

6.1. First episode

The fi rst episode focuses on a Grade 9 pupil (Giulia) who is studying algebra in school; in 
particular, she knows how to solve fi rst degree equations, but is not used to translating word 
problems into algebraic language. The following problem, taken from the medieval treatise of 
arithmetic by Paolo dell’Abbaco (1964, p. 44), was proposed to her:

A gentleman asked his servant to bring him 7 apples from the garden. He said: “You will 
meet 3 doorkeepers and each of them will ask you half of all the apples plus two taken 
from the remaining apples.” How many apples must the servant pluck if he wishes to have 
7 apples left? (our translation)

The problem was presented to the pupil in the original version which is written in an old- fash-
ioned Italian with words and a syntax no longer used in the current language. The following 
solution provided by Paolo dell’Abbaco was not shown to the pupil:

Act in this way and say: if the servant wants to have 7 [apples] left, how many apples is it 
suitable that he has at the last door? And afterwards say: if he wants to have 18 left at the 
second door, it is expedient that he has 40; and afterwards if he wants to have 40 at the 
third door it is expedient that he has 84. You have passed three doors and starting with 
84, 7 are left. It is done. (our translation)

Paolo dell’Abbaco’s solution is given through arithmetic calculations without explanations, 
since, as is often the case in medieval treatises, the solution does not intend a methodological 
generalization as we understand it today (Radford, 2003b). The process of arriving at a solu-
tion carried out by the pupil, fully described in Furinghetti (2007) consists of the following 
steps: reading the text of the problem and showing bewilderment because of the unusual form 
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of the problem and the task. After reading the text more carefully, some of the noteworthy 
steps were:

drawing a fi gure and using also the symbolic mode (use of the letter “x” to indicate vari-
ables as well as iconic representation of three gentlemen)
an arithmetic attempt with the number 50 (chosen by chance)

50
2 + 2 = 27

50 − 27 = 23

23
2 + 2 = 13.5

23 − 13.5 = 9.5

shifting from arithmetic to algebra. This shift happens by looking at the number 50 in 
the arithmetic expression as a generic number. Radford and Puig (2007) noted that an 
algebraic equation is in fact like a diagram in that an equation exhibits, through algebraic 
signs, the relations between the involved quantities. Here, the arithmetic expressions also 
work as a diagram in which the relations between the involved quantities emerge. The 
pupil writes a system of equations with unknowns and auxiliary unknowns

x
2 + 2 = a

x − ( x
2 + 2) = y

y
2 + 2 = b

y − (
y
2 + 2) = z

z
2 + 2 = c

z − ( z
2 + 2) = 7

scaffolding by the teacher to arrive at the solution

The solution of the ninth-grade pupil was compared with the solutions produced by 15 
experts (seven university students and eight prospective teachers with strong mathematics 
backgrounds). All the students except two used algebraic techniques; one tried to solve by 
using numerical attempts on a wrong formula, and one used an arithmetic technique. Among 
those who used algebra, we fi nd solutions involving some algebraic signs, but the way of rea-
soning is arithmetic-like: the solver starts from the fi nal data (the seven apples left) and goes 
back to the amount of apples. Below, the arithmetic solution is reported; it is remarkable that 
the solver, now a prospective teacher, was a very clever university student in mathematics who 
wrote her dissertation on algebra.

I fi nd the apples required before passing through the last door. Since the doorkeeper asks 
half plus 2 apples, the 7 apples are half of the amount less 2. Then, before the last door, 
the gentleman has 18 apples. I note that 18 is (7×2)+4, then, I deduce that before the 
second door, the gentleman has (18×2)+4 = 40 apples and thus he must pluck (40×2)+4 
= 84 apples.

The use of arithmetic by this student is not due to a lack of knowledge but to the search for 
a context from which it will be possible to endow the problem-solving process with meaning. 
The reader may note that her solving process is similar to that of Paolo dell’Abbaco.

•

•

•

•
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6.2. Second episode

The following episode refers to an activity of problem solving carried out in a classroom of 
students aged about 15, working in groups of three and familiar with performing exploration 
activities. A set of problems centered on proof was given to the students. The students knew 
that their performance would not be assessed with a mark. They were only asked to engage 
in solving the problems as diligently as possible and to write out all their thoughts during 
the solution. We also asked them to write down the diffi culties encountered and if they had 
enjoyed the problems.5 For the purposes of this chapter, it is fruitful to focus on the work of 
a group of three boys (Andrea, Luca, Simone), which hints at interesting connections with 
historical aspects. The problem was the following:

Given a cube made of little cubes all equal, take away a full column of little cubes. The 
number of the remaining little cubes is divisible by six. Try to explain why this happens.

The students started by drawing a cube. First, they tried a cube formed by 33 little cubes and 
went on by alternating explorations of an inductive type (the cases of cubes formed by 43, 

53, etc. little cubes) with refl ections on the particular case of the cube they had drawn. The 
drawing acted as a generic example. The exploration of particular cases even went on after the 
determination of the formula n3-n. The solving strategies were a continuous ‘back and forth’ 
between consideration of concrete situations (particular cubes and calculations on them) and 
reasoning with formulas and attempts to write them in different ways. In this phase, the 
teacher acted in what Vygotsky (1962) termed the zone of proximal development. He asked the 
students which ideas they were relating to divisibility. Simone mentioned multiples, Luca and 
Andrea decomposition. The new idea of decomposing n3–n came through a process of abduc-
tion (see Otte, 1997). At this point, the teacher suggested using the symbolic calculator to 
decompose the formula. Immediately after having obtained the decomposition x(x-–1)(x+1), 
the students verbalized the solution: “Given three consecutive numbers, at least one is even 
and one is divisible by three.”

Andrea, however, was not satisfi ed with this solution and looked for a different process. 
One of the reasons for his dissatisfaction could have been the fact that the solution was found 
through the teacher’s intervention and thus, Andrea felt he was not controlling the situation 
and needed to take possession of the solution. He refl ected on his drawing and we saw him 
make hand gestures and think intensely until he found a new solution based on the decom-
position and composition of the original cube and until a parallelepiped was obtained (see 
Figure 24.1). The teacher asked Andrea to write out how he had reached the new solution and 
why he had looked for it. He wrote:

I was not satisfi ed at all with the decomposition made with the symbolic calculator (I 
was thinking: Why have I not suddenly thought about factorizing?) [He is referring 
to the fact that before decomposing n3–n, he had worked a lot around the fi gure] and 
I was ‘looking at’ [The inverted commas are in Andrea’s text] the fi gure, partly to see 
that ‘monster’ and partly because I wished to fi nd a geometrical proof [Andrea tries to 
give meaning to what he was doing. He seems disturbed by the shift from the geometric 
context of the problem to the algebraic one]. Rather unconsciously—may be by vent—I 
started to strike off the column in question. When I saw the column struck off, I realized 
that the two remaining columns should have been moved so that a rectangle [He means, 
indeed, a parallelepiped] is formed, which is high a column less (x–1), deep equally (x), 
and large one column more (x+1). Since the formula which gives the volume of the rect-
angle [parallelepiped] is b⋅h⋅p, I wrote x(x–1)(x+1), which was the same as the factoriza-
tion of the calculator. To better understand my idea, see the sheet [Figure 24.1] with the 
steps of the operation. (our translation)
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The expression  “to look at” suggests that the student’s thinking was oriented to a deep 
understanding of the situation—a proof which explains. The process carried out by Andrea is 
mainly based on transformational reasoning. This reasoning was enhanced by three different 
kinds of signs used in an integrated way. We know that Peirce distinguishes between three 
kinds of signs: (1) icon, that is, something which designates an object on the grounds of being 
similar to it; (2) index, that is, something which designates an object that points to it in some 
way; (3) symbol, which designates an object on the grounds of some convention. Andrea uses 
all these kinds of signs in an integrated way. Initially, the icon (drawing) is the way of para-
phrasing the problem. His hand gestures are a means of enhancing transformational reason-
ing. In the very words written by the student (“I would have wished to fi nd a solution with 
numbers only”), we see that for him symbols hide meaning, while the drawing is a carrier of 
meaning. We note that the student operates on his drawing in a symbolic mode. Indeed, he 
manipulates the pieces of the cube as representatives of the algebraic symbols x, x–1, x+1.

The fi rst mode of solution produced by Andrea’s group may be ascribed to an axiomatic-
like proof scheme (they “derive” the conclusion that the number of the remaining cubes is 
a multiple of 6). The second mode belongs to the transformational proof scheme (Andrea  
“sees” that that number is a multiple of 6). The discrepancy of schemes shown by this student 
is an evidence of a discrepancy between proofs which prove and proofs which explain (see 
Hanna, 1990). We found it interesting that in the group, Andrea’s two group-mates acted in 
a different way. They both only worked inside the algebraic frame asking for formal aspects 
and avoided reference to concrete situations.

The process conceived by Andrea resembles the ‘cut and paste’ process carried out by al-
Khwarizmi (1838) for solving second degree equations. In the case of the equation x2+10x 
= 39, al-Khwarizmi starts from a square of side x, sticks on the four sides four rectangles of 
sides 10/4 and x. He obtains a cross (see Figure 24.2) whose area is x2+10x (which is equal 
to 39). Four squares of side 10/4 are added to the cross to obtain the fi nal square whose area 
(x+10/2)2 is equal to 39+4(10/4)2. By equalizing these quantities, the usual solving formula 
for second degree equations follows. Al-Khwarizmi was only interested in positive solutions.

We interpret this episode as a type of oblique connection between methods and forms of 
attending mathematically to some problems in the history of mathematics and contemporary 
learning. But again, we do not see the connection as a recapitulation of knowledge on the 
ontogenetic level. Before we discuss this point further, let us look at the third episode.

Figure 24.1 Andrea’s drawing for illustrating his proving process.
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6.3. Third episode

As a fi nal example, we report a case in which the construction of a mathematical object 
(the concept of maximum) in the classroom occurs through the embodiment of objects (via 
perception on the computer screen) and metaphorical language. We shall link this case to a 
passage by Fermat.6

In the mathematics laboratory, in which students use the dynamic geometric software 
Cabri, the following problem was assigned: “How does the area of a rectangle vary when the 
perimeter is constant? Take, for example, 12 as the value of the perimeter.” Grade 10 students 
engaged in the experiment; they were rather good at using Cabri, but did not know calculus. 
In their classroom, exploration was regularly used as a method of approaching conjectures 
and proof; the work was carried out in groups. They began by drawing with Cabri a segment 
line AB of length 6 (half perimeter) and took a point P on it (AP and PB represent the lengths 
of the sides of a rectangle of perimeter 12.) After that, they draw with Cabri a rectangle of 
sides AP and PB. In this fi rst phase, the students saw (“perceived”) that when P moves on 
the segment AB, the rectangle changes. Afterwards, they perceived that the area depends 
on the length of AP. This dependence could be established in a more precise way by the use 
of a spreadsheet. Some students were able to produce conjectures based on the trend of the 
variation. At the end, the rule was shown through the command to “trace” Cabri; see Figure 
24.3.

Thus the students were led to conclude that the greatest area is reached when the two sides 
are equal, i.e., the rectangle is a square. It was diffi cult for them to provide an explanation for 
this fact. But a group of students tried the following informal explanation:

Look at this, teacher: if I point in the middle and after I shift a little to the left and a little 
to the right, the area decreases.

This is not a proof and not even an explanation, but this sentence gave the teacher an oppor-
tunity for explaining how to pass from the pure perceptive phase to a phase of using symbols 
as a tool for solving problems. He said:

How can we translate into symbols […] the expression “to shift a little to the left and a 
little to the right from the middle point?” The answer is 3 – x and 3 + x. Then the area of 
the rectangle is (3 – x) (3+ x), that is 9 – x2.

At this point, the students easily acknowledged that the greatest area is reached when x = 0. 
The metaphor of “shifting to the left and to the right” is a bridge between perceptive situa-
tions and symbolic conceptual situations.

Figure 24.2 Al-Khwarizmi’s process for solving second degree equations.

x

x
10/4

x + 2(10/4)
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In considering this episode from the historical perspective taken in this chapter, we note a 
fascinating resemblance with the following passage from Methodus ad disquirendam maximam 
et minimam, in which Fermat sets out his method for evaluating maxima and minima7:

The whole theory of evaluation of maxima and minima presupposes two unknown quan-
tities and the following rule:

Let a be any unknown of the problem (which is in one, two, or three dimensions, 
depending on the formulation of the problem). Let us indicate the maximum or mini-
mum by a in terms which could be of any degree. We shall now replace the original 
unknown a by a + e and we shall express thus the maximum or minimum quantity in 
terms of a and e involving any degree. We shall adequate [adégaler], to use Diophantus’ 
term, the two expressions of the maximum or minimum quantity and we shall take out 
their common terms. Now it turns out that both sides will contain terms in e or its pow-
ers. We shall divide all terms by e, or by a higher power of e, so that e will be completely 
removed from at least one of the terms. We suppress then all the terms in which e or one 
of its powers still appear, and we shall equate the others; or, if one of the expressions 
vanishes, we shall equate, which is the same thing, the positive and negative terms. The 
solution of this last equation will yield the value of a, which will lead to the maximum or 
minimum, by using again the original expression.

Here is an example:

To divide the segment AC at E so that AE x EC may be a maximum.

A E C

We write AC = b; let a be one of the segments, so that the other will be b – a, and the 
product, the maximum of which is to be found, will be ba – a2. Let now a + e be the 
fi rst segment of b; the second will be b – a – e, and the product of the segments, ba – a2 

Figure 24.3 Figure made with Cabri by students for the problem of fi nding the greatest area.
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+ be – 2ae - c2; this must be adequated with the preceding: ba – a2. Suppressing common 
terms: be ~ 2ae + e2. [Dividing all terms: b ~ 2a + e]8. Suppressing e: b = 2a. To solve the 
problem we must consequently take the half of b.

We can hardly expect a more general method.

Again, there is a connection here between historical conceptual developments and contem-
porary learning. The connection in this and in previous episodes is not a recapitulative one 
(i.e., it is not a connection in which the students’ conceptual development is traversing the 
same steps as those supposedly traversed by the conceptual development of mathematics.) We 
see this connection as follows: the students are required to deal with problems that belong 
to a cultural mathematical tradition. This tradition has its own concepts, methods and ideas 
(e.g., what is taken to be relevant, what is considered to be an evidence, a proof, etc.) These 
concepts, methods and ideas have been established and refi ned over the course of centuries. 
Giulia, Andrea, and the other students meet this well-established tradition in the school. 
It is clear that for the students, the objects and methods of the mathematical tradition that 
they meet at school are not easily identifi able from the outset. They have to be unpacked, so 
to speak. Mathematical concepts and methods are general, and they cannot be fully grasped 
through the particulars that instantiate them. How then do the students get acquainted with 
the mathematical tradition? Rather than constructing the monumental knowledge that con-
stitutes our millenarian mathematical tradition anew and from scratch, the students make 
sense of cultural mathematical concepts (Radford, 2006c). This production of sense entails 
noticing and understanding the cultural categories of relevance, evidence, proof, etc. But, 
from the ontogenetic viewpoint, it also entails a new concrete form of development that is 
shaped by the historical one. It is the historical line of development that pulls up, so to speak, 
the ontogenetic one and makes us “see” a kind of recapitulation. This illusion disappears as 
soon as we realize that the cultural context “prepares” the encounter between the ontoge-
netic and phylogenetic dimensions. This preparation occurs under the effects of explicit and 
implicit factors that underpin the various aspects of learning. One of the more prominent 
aspects is the mathematical problems that students are required to tackle.

Mathematical problems (like those discussed in the previous three episodes) are bearers 
of a human intelligence deposited in them by the cognitive activity of previous generations 
(Radford, Bardini, Sabena, Diallo, & Simbagoye, 2005). They suggest ways of conceptually 
attending some aspects of the world. They offer intellectual models that suggest relevance 
(e.g., maximization problems within specifi c constraints). In the same way, the cultural arti-
facts that the students use to try and solve these problems (e.g., pencil and paper, the cube, 
written and spoken language, the language of arithmetic and algebra, software like Cabri 
Géomètre) are bearers of human intelligence and, like the mathematical problems, suggest 
lines of ontogenetic conceptual development. In getting acquainted with the mathematical 
tradition, the students then mobilize cultural tools that connect cultural concepts with their 
ontogenetic understanding in ways that do not really reveal an alleged recapitulation but 
rather unveil the encounter of the ontogenetic and phylogenetic developments. This encoun-
ter is produced by the effects of the school as a sociocultural institution (Bosch & Chevallard, 
1999) equipped with a complex system of knowledge acquisition (teachers and other adults, 
a chronologically ordered curriculum, spaces of interaction, routines of socialization, experi-
mentation, feedback and so on.)

7. THE RECOURSE TO HISTORY IN CONTEMPORARY 
MATHEMATICS EDUCATION

In the previous sections, we discussed some interpretations of recapitulation law emerging 
from the words of past mathematicians and from classroom experiences. Let us now examine 
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a few examples of contemporary mathematics educators, confi ning our discussion to two 
specifi c cases. The fi rst emphasizes (mainly although not exclusively) a theoretical interest. 
The second appears closer to specifi c contexts arising from the need to enhance teaching and 
learning processes in mathematics instruction. In the fi rst case, the history of mathematics 
appears as a theoretical tool for understanding developmental aspects of mathematical think-
ing. The purpose of the second case is to facilitate, through explicit pedagogical interventions, 
students’ learning of mathematics by attempting to relate the development of students’ math-
ematical thinking to historical conceptual developments.

7.1. The interface between history and developmental 
aspects of mathematical thinking

The work of Sfard (1995) provides a clear example of contemporary views on the relation 
between history and the developmental aspects of mathematical thinking. She analyzed the 
development of algebra by blending historical and psychological perspectives. At the begin-
ning of her article, she claimed that

there are good reasons to expect that, when scrutinized, the phylogeny and ontogeny 
of mathematics will reveal more than marginal similarities. At least, this is what follows 
from the constructivist view according to which learning consists in the reconstruction 
of knowledge. (p. 15)

The similarities between the phylogenetic and ontogenetic domains, according to this account, 
result from “inherent properties of knowledge.” For Sfard, who in the 1990s was following 
a Piagetian epistemological perspective, knowledge can be theoretically described in terms 
of genetic structural levels, and it is precisely the nature of the relationship between the dif-
ferent levels that accounts for the similarity of phenomena appearing in both the historical 
and the individual’s construction of knowledge. As she noted, “diffi culties experienced by an 
individual learner at different stages of knowledge formation may be quite close to those that 
once challenged generations of mathematicians” (Sfard, 1995, pp. 15–16). A large part of 
the text is devoted to the discussion of the development of algebraic language. Indeed, using 
Nesselmann’s (1842) distinction between rhetorical, syncopated, and symbolic algebra, Sfard 
endeavored to locate those “constants” (more precisely, those “developmental invariants”) 
that ensure the passage from rhetorical and syncopated algebra to symbolic algebra. Rhetorical 
algebra refers to the reliance on nonsymbolic, verbal expressions to state and solve a problem, 
as it appears, for instance, in Arabic, Hindu, and Italian medieval texts. Syncopated algebra is 
seen as a more elaborate algebra in that, although still relying heavily on verbal expressions, it 
introduces some symbols, the work of Diophantus being the canonical example. Viète’s sys-
tematic introduction of letters epitomizes symbolic algebra. After confronting experimental 
classroom, results with the traditional view of the historical development of algebra, Sfard 
concluded that one of the development invariants underpinning the passage from rhetorical 
and syncopated algebra to symbolic (Vietan) algebra is the precedence of operational over 
structural thinking. Operational thinking, in this context, means a way of thinking about 
algebraic objects in terms of computational operations. Structural thinking is related to more 
abstract objects conceived structurally on a higher level.

As we can see, the use of history in Sfard’s approach is an attempt to corroborate paral-
lelisms between ontogenetic and phylogenetic developments. As she said, “history will be 
used here only to the extent which is necessary to substantiate the claims about historical 
and psychological parallels” (Sfard, 1995, p. 17). Although she stressed the importance for 
teachers to be aware of the historical development of mathematics, the intention is not that of 
creating an historically inspired classroom activity. This is the goal of another perspective in 
contemporary mathematics education, discussed in section 7.2. For the time being, we only 
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want to discuss a sociocultural approach that shares Sfard’s use of history for epistemologi-
cal reasons but, in contrast, emphasizes the crucial link between cognition and the practi-
cal human activity in which cognition is embedded. This approach (see Radford, 1997a; 
Radford, Boero, & Vasco, 2000) is inspired by key ideas of the Vygotskian and cultural 
perspectives alluded to in section 3 of this chapter and is driven by a conception of knowl-
edge that differs from Piagetian genetic structuralism, inasmuch as it perceives knowledge 
and individuals’ intellectual means to produce it as intimately and contextually related to 
their cultural setting. Knowledge, in fact, is conceived as the product of a mediated cognitive 
refl exive praxis (see Radford, 2000b). The mediated character of knowledge refers to the role 
played by artifacts, tools, sign systems and other means to achieve and objectify the cognitive 
praxis. The refl exive nature of knowledge is to be understood in Ilyenkov’s sense, that is, 
as the distinctive component that makes cognition an intellectual refl ection of the external 
world in the form of the individuals’ activities (Ilyenkov, 1977, p. 252). Knowledge as the 
result of a cognitive praxis (praxis cogitans) emphasizes the fact that what we know and the 
way we come to know it is framed by ontological stances and by cultural meaning-making 
processes that shape a certain kind of rationality out of which specifi c kinds of mathematical 
questions and problems are posed.

Theoretically, however, this does not mean that the study of knowledge is determined by 
social, economic and political factors because these factors are also historically produced. Cer-
tainly, the link between culture and cognition is more subtle than the distinction between the 
“internal” and “external” realms employed in many historiographic approaches that see the 
external as only a mere stimulus for conceptual changes and developments. Methodologically, 
this means that the study of the historical development of mathematics cannot be reduced to 
the sociology of knowledge. This also means that such a study cannot be done through the 
analysis of texts only. The “archive” (to borrow Foucault’s (1969) expression), as a histori-
cal repository of previous experiences and conceptualizations, bears the sediments of social, 
economic, and symbolic human activities. Therefore, understanding the rationality within 
which a mathematical text was produced requires the relocation of the text within its own 
context. The goal of this kind of epistemological refl ection is not to fi nd a parallel between 
phylogenetic and ontogenetic developments. In the sociocultural approach that we advocate, 
mathematical texts from other cultures are investigated while taking into account the cultures 
in which they were embedded. This allows the researcher to scrutinize the way mathematical 
concepts, notations, and meanings were produced.

Through an oblique contrast with the notations and concepts taught in contemporary cur-
ricula, we seek to gain insights about the intellectual requirements that learning mathematics 
demands of our students. We also seek to broaden the scope of our interpretations of class-
room activities. In designing classroom activities, we aim at eventually adapting conceptual-
izations embedded in history to facilitate students’ understanding of mathematics. Our work 
on Babylonian algebra and the teaching of second-degree equations (Radford, & Guérette, 
2000) is an example of the latter. Our classroom research on the strategies that students use to 
deal with the algebraic generalization of patterns and the way they conceive relations between 
the concrete and the abstract (see Radford, 1999a, 2000c)—research based on our investi-
gation of pre- and Euclidean forms to convey generality (Radford, 1995a)—is an example 
of oblique contrast between past developments and contemporary students’ conceptualizing 
processes.

Our classroom research on the introduction of algebraic symbolism also benefi ted from 
our epistemological inquiries based on editions of original texts from medieval and Renais-
sance Italian mathematics (Radford, 1995b, 1997b). Space constraints do not allow us to go 
further, but this anthropological approach to the epistemology of mathematics offers a new 
view of the rise of symbolic algebra in the 16th century. The difference from traditional views 
stressing the passage from syncopated to abstract algebra in terms of abstractive processes is 
that, in our account, changes in development are related to changes in societal practices and 
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the way in which mathematical conceptualizations are subsumed in them (Radford, 2006a). 
Briefl y, what we fi nd in our analysis is that there were two main mathematical practices in 
the early Renaissance, that used by merchants and abacus mathematicians and that used by 
humanists and court mathematicians. While the latter were busy with the restoration of Greek 
texts, the former were applying Arabic algebraic techniques to practical as well as nonpracti-
cal problems (e.g., problems about numbers). Symbolic algebra was a time-consuming effort 
made by Italian humanist and engineer mathematicians, such as the priest Francesco Mau-
rolico, who eradicated all commercial content in his Demonstratio Algebrae, which was com-
pleted October 7, 1569, and edited by Napoli in the 19th century (Napoli, 1876). Another 
example is the engineer Rafael Bombelli, who, after having learned that the fi rst books of 
Diophantus’ Arithmetic were on the shelves of a Roman library, studied them and ended up 
eliminating the commercial problems in his Algebra. Bombelli provided a fi nal version of it 
that conformed much more to the humanist understanding of Greek mathematics. In France, 
a similar effort was made by the humanists Jacques Peletier and Guillaume Gosselin (although 
in this case, the promotion of French as a scientifi c language was an important drive; Cifo-
letti, 1992). The underlying reason for the effort to introduce a specifi c symbolism in algebra 
was not due to the limitations of vernacular language. Mathematicians working within the 
possibilities offered by rhetorical algebra produced many diffi cult problems involving several 
unknowns, as can be seen in Fibonacci’s Il Flos (Picutti, 1983). These problems could not 
be simplifi ed by the introduction of letters because what was being symbolized in the emer-
gence of symbolic algebra did not include all of the unknowns mentioned in a problem but 
only one of them. (See, for instance Bombelli’s symbolism or the neogeometrical example in 
Piero della Francesca’s Trattato d’Abaco, edited by Arrighi, 1970.) It was only later that some 
mathematicians in Germany began using letters for several unknowns (see Radford, 1997b). 
In our approach, the emergence of algebraic symbolism appears to be related to the efforts 
made by humanists and court-related mathematicians to render the merchant’s algebra noble 
and court-worthy (details in Radford, 2000b). This was accomplished by the lawyer and 
mathematician François Viète, at the French court, who followed the prestigious Greek tradi-
tions typifi ed by Diophantus’ Arithmetic rather than the multitude of 15th- and 16th-century 
abacus treatises.

We now discuss a second position towards the use of history in contemporary mathemat-
ics education, that which aims at enhancing, through explicit pedagogical interventions, the 
students’ learning of mathematics.

7.2. Students’ mathematical thinking and historically based pedagogical actions

Boero and collaborators (see Boero, Pedemonte, & Robotti, 1997; Boero, Pedemonte, 
Robotti, & Chiappini, 1998) made use of the history of mathematics to investigate the nature 
of theoretical knowledge and the conditions by which it emerges. Their historico-epistemo-
logical analysis aims at looking for elements considered typical of mathematical thinking, such 
as organization, coherence and systematic character. They have investigated the role played 
by defi nitions and proofs, as well as by the type of theoretical discourse. Their framework 
draws on Bakhtin’s theory of discourse, mainly the theoretical construct of “voice” (Bakhtin, 
1968; Wertsch, 1991), and on Vygostky’s distinction between scientifi c and everyday con-
cepts (Vygotsky, 1962). The historico-epistemological inquiry is subsequently invested in 
the design and implementation of teaching settings based on a careful selection of primary 
sources, the main objective of which is to allow the students to echo the voices of past math-
ematicians. Through the echoing process, the students bring in their individual subjective and 
cultural backgrounds to build a “voices and echoes game,” which proves to be fruitful for the 
acquisition of theoretical knowledge. The voices from the past are not listened to passively but 
actively appropriated through an effort of interpretation. Usually the students’ echoes may 
take various forms. Boero and his team have provided a categorization of some of the ways 
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in which the students enter the dialogical game. For instance, a “mechanical echo” consists 
in precise paraphrasing of a verbal voice, whereas an “assimilation echo” refers to the transfer 
of the content and method conveyed by a voice to other problem situations. A “resonance” 
is a student’s appropriation of a voice as a way of reconsidering and representing his or her 
experience.

Among the concrete instances of theoretical knowledge examined by the authors are the 
theories of the falling bodies of Galileo and Newton, Mendel’s probabilistic model of the 
transmission of hereditary traits, and theories of mathematical proof and algebraic language, 
all of which are characterized by aspects of a counterintuitive nature.

Another example of the contemporary use of history in the classroom is the research of 
Sierpinska and collaborators (e.g., Sierpinska, Trgalová, Hillel, & Dreyfus, 1999). One of the 
goals of this research is to provide an alternative, based on the use of the Cabri-Géomètre 
software, to the traditional axiomatic approach to the teaching of linear algebra in undergrad-
uate courses. A problem examined in this research, which underlies important aspects of the 
learning of basic linear algebra, is that of understanding key differences in the representations 
of mathematical objects. In this line of thought, Sierpinska has emphasized the distinction 
between “numerical” and “geometrical” space.

The difference between geometrical and numerical space is clear in the history of linear 
algebra. Sierpinska, Defence, Khatcherian, and Saldanha (1997) identifi ed three modes of 
reasoning, which they labeled “synthetic-geometric,” “analytic-arithmetic,” and “analytic-
structural.” As they noted (a more detailed report is in Bartolini Bussi, & Sierpinska, 2000), 
the concepts of linear algebra do not all have the same meaning and, in the classroom, they 
are not equally accessible to beginning students. The design of the teaching activities as well 
as the understanding of students’ answers took into account the modes of reasoning as deter-
mined in the historico-epistemological analysis. (An extended account of the teaching activi-
ties can be found in Sierpinska, Trgalová, Hillel, & Dreyfus, 1999 and Sierpinska, Dreyfus, 
& Hillel, 1999.)

Recently, C. Tzanakis and his collaborators have been conducting a cross-curricular proj-
ect that involves teachers of mathematics, language, and history (see Tzanakis, 2006). The 
main innovation of this project is the introduction of original texts in the normal teaching 
of Euclidean Geometry in the fi rst year of the Greek Lyceum (16-year-old students). They 
selected some parts of Euclid’s Elements and Proclus’ Commentary on the 1st Book of the Ele-
ments to create, among students and teachers, the atmosphere of a debate over the concept of 
proof and the issue of critical thinking. Selected propositions taken from Euclid’s Elements 
and some of Proclus’ commentary on ancient critiques of these propositions were examined 
from different points of view: the linguistic, the historical and the mathematical. Students 
and teachers engaged in the interpretation and discussion of Euclid’s theoretical choices and 
Proclus’ views on ancient critiques of Euclid’s proofs (Tzanakis, 2006).

In addition to these studies that interpret the didactical phenomena in the light of educa-
tional research, there are studies stemming directly from teachers’ experience in classroom. 
The proceedings of European Summer Universities (Lalande, Jaboeuf, & Nouazé, 1995; 
Lagarto, Vieira, & Veloso, 1996; Radelet-de-Grave, & Brichard, 2001; Furinghetti, Kaijser, 
& Tzanakis, 2006) offer good examples of teaching sequences entirely based on history. Usu-
ally, the authors are teachers with a deep familiarity with the history of mathematics and a 
good teaching experience. They also are at ease with the use of primary sources. Generally 
speaking, they may not be considered the mathematics teacher that we fi nd usually in school, 
nor is their work common in school environments. On the contrary, there is evidence that 
they are exceptions in the school panorama. Siu (2006), indeed, has listed 15 reasons given by 
teachers for not using history in the classroom, in spite of decades of encouragement provided 
by curriculum developers and researchers. Also, the TIMSS 1999 Video Study seems to show 
that history of mathematics does not constitute an important part of teaching in the seven 
visited countries (see Smestad, 2006).
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8. SYNTHESIS AND CONCLUSION

The history of mathematics can be used for different reasons in the teaching of mathematics 
and in the training of prospective teachers. In this chapter, we dealt with one of the many uses 
of the history of mathematics in mathematics education, namely, the investigation of histori-
cal conceptual developments to deepen our understanding of mathematical thinking and our 
capacity to enhance the students’ learning of mathematics. In the fi rst part of the chapter, we 
focused on the psychological recapitulation. In particular, we discussed how psychological 
recapitulation was imported from biological recapitulation and gave rise to a discourse that 
framed much of the discussions about child development from the beginning of the 20th 
century. Psychological recapitulation was adopted by some eminent mathematicians who, in 
one form or another, supported the idea that in developing their mathematical thinking, 
children would traverse similar steps as those found in the history of mathematics. Within 
this conception, during their development, children would supposedly face some problems, 
diffi culties, or obstacles similar to those encountered by past mathematicians. Recapitulation-
ism, we argued, served as the means by which some mathematicians wanted to counter a 
teaching orientation that was based on the commitment to rigor and logical structures which 
had arisen in the fl ow of the research on the foundations of mathematics at the turn of the 
20th century.

Nonetheless, one of the problems with the recapitulationist approach is that conceptual 
developments are seen as chronologically self-explanatory and psychological evolution is taken 
for granted. Furthermore, knowledge is conceived as having little (if any) bond to its context 
and history is reduced to a linear sequence of events judged from the vantage point of the 
modern observer.9 In all likelihood, the extremely low number of studies that attempt to check 
the validity of recapitulation law is evidence of the impossibility of reproducing the conditions 
in which ideas developed in the past. As Dorier and Rogers noted, “‘naive recapitulationism’ 
has persisted in many forms and now we accept that the relation between ontogenesis and 
phylogenesis is universally recognized to be much more complex than was originally believed” 
(Dorier, & Rogers, 2000, p. 168).

This statement corresponds well to recent nonpositivist epistemological and anthropologi-
cal trends (see, e.g., Cole, 1996; Gould, 1979; Shweder, 1991). Indeed, in emphasizing the 
relation between knowledge and social practices, these trends have raised some criticisms to 
the acultural stance conveyed by the general and universal character of the recapitulation law, 
thereby opening new ways to reconceptualize the relationship between historical conceptual 
developments and the teaching of mathematics (Radford, 1997a).

In the course of our discussion, we mentioned two different and critical stances toward the 
relation between ontogenesis and phylogenesis as elaborated by Piaget and Garcia on the one 
hand and by Vygotsky and his collaborators on the other. The way Piagetian and Vygotskian 
epistemologies have inspired current work on contemporary mathematics education was made 
clear in the brief presentations of specifi c traits in the works of Boero, Radford, Sfard, and 
Sierpinska. We also presented a different interpretation of recapitulation based on the idea 
of conceptual connections between ontogenetic and phylogenetic developments. These con-
nections—induced by the complex learning system of the school—appear as parts of the 
students’ process of objectifi cation (Radford, 2002) and making sense of a historically and 
culturally constituted knowledge deposited and mobilized by the school (Radford, 2006c).

Regarding recommendations for future research, it can be suggested, in light of the previ-
ous discussion, that a pedagogical use of the history of mathematics committed to enhancing 
students’ conceptual achievements requires a critical refl ection about the conceptions of onto-
genesis and phylogenesis and, of course, about knowledge itself. But to be fruitful in practical 
terms, such a critical refl ection must be clear about its classroom implications (see Demattè, 
2006). The episodes described in section 6 suggest that to make the use of history effective, 
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teachers need to be able to create suitable learning environments. This requires that teachers 
gain an appropriate understanding of the differences between ontogenetic and phylogenetic 
developments and maintain a critical stance toward recapitulation views. As the sophisticated 
methodology of Boero’s approach suggests, this requires that teachers be suffi ciently comfort-
able in handling cognitive and historical aspects. Let us make three suggestions concerning 
actions for research.

 1. On a theoretical level, discussions about recapitulation and its different meanings should 
be promoted among historians, epistemologists, psychologists, anthropologists, and 
mathematics educators.

 2. On a practical level, models of contrast and conceptualizations between ontogenetic and 
phylogenetic developments should also be considered further. Models of contrast may 
help us to better grasp specifi c traits of mathematical thinking, its relation to cultural set-
tings and the mathematical concepts thereby produced. This can lead to a better under-
standing of the kinds of practical pedagogical interventions that can be envisioned.

 3. Theoretical reconceptualizations of recapitulation and contrasts and comparisons between 
ontogenetic and phylogenetic domains should be explicit as to how they can frame the 
engineering of material and teaching sequences.

We consider these related research topics to be interactively fed by theoretical inquiries, his-
torical studies and also classroom observations.

The course of the three aforementioned actions for future research will ultimately depend 
on the very conception of mathematical knowledge to be adopted. At this point, two main 
contrasting trends seem to be emerging. In the fi rst trend, what makes for the specifi city of 
mathematical knowledge is its systemic, objective and logical nature (see Fujimura, 1998.) 
In the second trend, which is much more anthropologically driven, knowledge is conceived 
as a kind of culturally framed activity enabling individuals to inquire about their world and 
themselves. Here “systematicity” and “logicality” are seen as circumscribed characteristics 
of knowledge that can differ from culture to culture (see Radford, 1999b). Between them, 
of course, many theoretical possibilities can be envisaged. What they may have in common, 
though, is the growing awareness that “a concrete understanding of reality cannot be attained 
without a historical approach to it” (Ilyenkov, 1982, p. 212).

NOTES

 1. The authors of this chapter are listed in alphabetical order. This chapter was made possible by 
a research program funded by the Social Sciences and Humanities Research Council of Canada 
(SSHRC/CRSH) and by the Italian national project Signifi cati, congetture, dimostrazioni: dalle 
ricerche di base in didattica della matematica alle implicazioni curricolari (PRIN 2005).

   This chapter is based on our previous work (Furinghetti & Radford, 2002).
 2. Nikolai Alexandrovich Izvolsky was born in 1870 in Tula, Western Russia. He worked as a teacher 

at the 2nd Moscow Military School and from 1922, he was a professor at the 2nd Moscow State 
University (now Moscow State Pedagogical University). He wrote papers on mathematics education 
and some textbooks in arithmetic, algebra, and geometry. Izvolsky died in Yaroslavi in 1938. The 
authors are grateful to Professor Ildar Safuanov from the Pedagogical Institute of Naberezhnye 
Chelny for the information he kindly provided concerning the life of Izvolsky.

 3. A complete study of the genetic method as envisioned by Toeplitz can be found in Schubring 
(1978).

 4. This passage is taken from (Toeplitz, 1963). The original German version appeared in Jahresbericht 
der Deutschen Mathematischen Vereinigung, XXXVI, 1927, 88–100 with the title “Das Problem 
der Universitaetvorlesungen Ueber Infi nitesimal-rechnung und ihrer Abgrenzung gegenueber der 
Infi nitesimalrechnung an hoeheren Schulen.”

 5. For a wider account of the experiment see (Cartiglia, Furinghetti, & Paola, 2004).
 6. For a full account of the experiment see (Paola, 2004). It is remarkable that the experiment was set 

in a computer science class, without any reference to history.
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 7. I report Fermat’s passages as reprinted in Fauvel, (1990, pp. 28–30.)
 8. The sentence in square brackets is not in (Fauvel, 1990): it is my translation of the sentence “et, 

omnibus per E divisis, B adaequabitur Abis + E” (Fermat, 1891, tome.I, p.134). The same sentence 
is translated as “Divisant tous les termes: b ~ 2a + e” in the French version (Fermat, 1891–1922, tome 
III issued in 1896, p. 122).

 9. Schubring (2006) writes, “The historiography of mathematics has hitherto concentrated on the  
peaks’, on the ‘heroes’ of mathematics, and it has practiced a resultatist view, searching for forerun-
ners of present mathematics” (p. 339).
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