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Summary. In this presentation I will deal with the ontogenesis of algebraic thinking. 
Drawing on a cultural semiotic perspective, informed by current anthropological and 
embodied theories of knowing and learning, in the first part of my talk I will 
comment on the shortcomings of traditional mental approaches to cognition. In tune 
with contemporary research in neuroscience, cultural psychology, and semiotics, I 
will contend that we are better off conceiving of thinking as a sensuous and sign-
mediated activity embodied in the corporeality of actions, gestures, and artifacts. In 
the second part of my talk, I will argue that algebraic thinking can be characterized in 
accordance with the semiotic means to which the students resort in order to express 
and deal with algebraic generality. I will draw upon results obtained in the course of a 
10-year longitudinal classroom research project to offer examples of students’ forms 
of algebraic thinking. Two of the most elementary forms of algebraic thinking 
identified in our research are characterized by their contextual and embodied nature; 
they rely extensively upon rhythm and perceptual and deictic (linguistic and gestural) 
mechanisms of meaning production. Furthermore, keeping in line with the situated 
nature of the students’ mathematical experience, signs here usually designate their 
objects in an indexical manner. These elementary forms of algebraic thinking differ 
from the traditional one—based on the standard alphanumeric symbolism—in that 
the latter relies on sign distinctions of a morphological kind. Here signs cease to 
designate objects in the usual indexical sense to give rise to symbolic processes of 
recognition and manipulation governed by sign shape. 
 
The aforementioned conception of thinking in general and the ensuing distinction of 
forms of algebraic thinking shed some light on the kind of abstraction that is entailed 
by the use of standard algebraic symbolism. They intimate some of the conceptual 
shifts that the students have to make in order to gain fluency in a cultural 
sophisticated form of mathematical thinking. Voice, gesture, and rhythm fade away. 
Embodied and contextual ways of signifying are then replaced with a perceptual 
activity where differences and similarities are a matter of morphology, and where 
meaning becomes relational. 
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SIGNS, GESTURES, MEANINGS: 
ALGEBRAIC THINKING FROM A CULTURAL SEMIOTIC 

PERSPECTIVE 
Luis Radford  

Université Laurentienne, Ontario, Canada 
À la mémoire de Georges Glaeser 

INTRODUCTION 
To deal with algebraic thinking in a plenary session is a bit risky. Unavoidably, it conveys 
the feeling of something déjà vu—something that has been said again and again. Indeed, 
since the 1980s algebraic thinking has been one of the most researched areas in 
mathematics education. And this is so not by chance. Among the branches of mathematics 
that students have to learn in school, there is none more frightening than algebra. Many 
students in our teachers’ training program at Laurentian University confess that everything 
was going well until they met algebra in Junior High School. As they admit, suddenly they 
found themselves in front of an abstract symbolic language, the meaning of which they 
could not grasp—a kind of hieroglyphic language that, to their dismay, has become like 
the Esperanto of modern sciences. 
And it is the investigation of the students’ legendary difficulties in understanding algebra 
and the search for new ways to teach this subject that has kept many researchers busy for 
the past three decades. The question, hence, is whether or not there is really something 
new to say about algebraic thinking. It looks like there is not much left to be said about it. 
This impression would only be strengthened if you were to do a Google search. We did 
one at the end of November 2008, in our preparation for this talk, and our “algebraic 
thinking” search returned almost 176,000 hits. However, as you go through the entries, 
you realize that the content does not tell you much about algebraic thinking. The content is 
rather about items usually included in school algebra curricula. The least that can be said is 
that the term “algebraic thinking” has become a catch-all phrase. This may be a token of 
the fact that to deal with algebraic thinking is not a simple matter. It supposes that you 
have some sort of theory about thinking or at least a clear idea of what you mean by 
thinking in general. Let us pause for a moment: What do you take “thinking” to mean? 
As psychologists, philosophers, anthropologists and others are willing to acknowledge, 
there is no simple and direct answer to this question. As odd as it may seem, thinking is 
something that we continuously do. Thinking is as ubiquitous as breathing. Yet, we still do 
not know how we think! Commenting on the elusiveness of thinking, Dan Rappaport said: 
“The knowledge that thinking has conquered for humanity is vast, yet our knowledge of 
thinking is scant. It might seem that thinking eludes its own searching eye.” (Rappaport, 
1951; quoted in Benson, 1994, p. 13). Western idealist and rationalist epistemologies have 
conveyed the idea that thinking is something immaterial, something purely mental, 
bodiless. The influence of Plato’s epistemology on our understanding of thinking is 
perhaps greater than we are usually aware (Radford, Edwards, Arzarello, 2009). 
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In this article, I introduce a typology of forms of algebraic thinking based on their level of 
generality. The typology rests on a theoretical approach that capitalizes on the results of 
the 1990s algebra research agenda and supplements it by incorporating a semiotic 
theoretical platform. Signs lose the representational and ancillary status with which they 
are usually endowed in classical cognitive theories in order to become the material 
counterpart of thought. This semiotic platform opens up new possibilities for 
understanding algebraic signs and formulas in a nonconventional manner. Traditionally, 
letters and signs for operations (like “+”, “x”, etc.) have been considered the algebraic 
signs of school algebra. Alphanumeric symbolism has indeed been regarded as the 
semiotic system of algebra par excellence. Yet, from a semiotic perspective, signs can also 
be something very different. Words or gestures, for instance, are signs on their own —
semiotically speaking, they could be as genuine algebraic signs as letters. Of course, as I 
will argue later in more detail, this does not mean that they are equivalent or that we can 
simply substitute the ones for the others. What makes semiotic systems unique and 
unsubstitutable is their mode of signifying. There are things that we can signify and intend 
through certain signs, and things that we cannot. Try to put Pablo Neruda’s famous poem 
“Canción Desesperada” [“Desperate Song”] in an algebraic formula, and you will see how 
hopeless the task is. 
In the first part of this article, I argue that the mathematical situation at hand and the 
embodied and other semiotic resources that are mobilized to tackle it in analytic ways 
characterize the form and generality of the algebraic thinking that is thus elicited. My 
claim is based not only on semiotic considerations but also on new theories of cognition 
that stress the fundamental role of the context, the body and the senses in the way in which 
we come to know. In the second part, I present some concrete examples through which the 
typology of forms of algebraic thinking is illustrated. 
THE 1990s ALGEBRA RESEARCH AGENDA 
During the discussions held in the 1980s and 1990s, either in the PME Algebra Working 
Groups or in other similar research meetings (Bednarz, Kieran, & Lee, 1996; Sutherland, 
Rojano, Bell, & Lins, 2001), it was impossible to agree upon a minimal set of 
characteristics of algebraic thinking. There was, however, a more or less general consensus 
concerning two aspects. Algebra deals with objects of an indeterminate nature, such as 
unknowns, variables, and parameters. Furthermore, in algebra, such objects are dealt with 
in an analytic manner. What this means is that in algebra, you calculate with indeterminate 
quantities (i.e. you add, subtract, divide, etc. unknowns and parameters) as if you knew 
them, as if they were specific numbers (see, e.g., Kieran 1989; 1990; Filloy & Rojano, 
1984a, 1989; Cortes, Vergnaud, & Kavafian, 1990; for some epistemological analysis, see 
Filloy & Rojano, 1984b; Puig, 2004; Radford & Puig, 2007; Serfati, 1999). 
Of course, one way or another, algebraic objects have to be designated. The general 
tendency in the 1990s was to associate school algebra and algebraic thinking with the use 
of letters. Even if at the time the idea was not universally shared (Linchevski, 1995; 
Balacheff, 2001), it nonetheless prevailed and is still very strong in current research on the 
teaching and learning of algebra. Although I do believe that it is impossible to practice 
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abstract algebra (e.g., Galois Theory) without some sort of sophisticated notations, I do not 
think that algebra and algebraic thinking can be reduced to the use of letters. As John 
Mason pointed out some years ago, “the manipulation of symbols is only a small part of 
what algebra is really about” (1990, p. 5). Letters indeed have never been either a 
necessary or a sufficient condition for thinking algebraically. For instance, in his Elements, 
Euclid used letters without thinking algebraically. Conversely, Chinese and Babylonian 
mathematicians thought algebraically without using letters (Radford, 2006). 
What I am suggesting here is hence this: algebra is about dealing with indeterminacy in 
analytic ways. But instead of giving alphanumeric symbolism the exclusive right to 
designate and express indeterminacy I am claiming that there is a plurality of semiotic 
forms to accomplish it. This is true of the practices of elementary algebra and of advanced 
algebra as well —even if in the latter, alphanumeric symbolism becomes more salient. 
But before I go further, let me reassure you that my idea is not to challenge the power of 
symbolic algebra. Rather, I am trying to convince you that it is worthwhile to entertain the 
idea that there are many semiotic ways (other than, and along with, the symbolic one) in 
which to express the algebraic idea of unknown, variable, parameter, etc. I deem this point 
important for mathematics education for the following reason. Ontogenetically speaking, 
there is room for a large conceptual zone where students can start thinking algebraically 
even if they are not yet resorting (or at least not to a great extent) to alphanumeric signs. 
This zone, which we may term the zone of emergence of algebraic thinking, has remained 
largely ignored, as a result of our obsession with recognizing the algebraic in the symbolic 
only. 
SENSUOUS COGNITION 
My claim about a diversity of semiotic forms for dealing with algebraic indeterminacy 
rests on a perspective on thinking that is squarely at odds with the mental conception of 
thinking that informed most of the 1990s research on mathematics education. Within this 
mental conception of thinking signs were often considered “symptoms” of mental activity 
—hence the distinction between internal and external representations. Drawing on 
Vygotskian psychology, from the semiotic-cultural perspective advocated here, the 
question of the relationship between signs and thought is thematized in a different way. 
First, signs are considered in a broad sense, as something encompassing written as well as 
oral linguistic terms, mathematical symbols, gestures, etc. (Arzarello, 2006; Ernest, 2008; 
Radford, 2002a). Second, signs are not considered as mere indicators of mental activity. In 
contrast, signs are considered as constitutive parts of thinking. In more precise terms, 
within this semiotic-cultural perspective, thinking is considered a sensuous and sign-
mediated reflective activity embodied in the corporeality of actions, gestures, and 
artifacts. 
The adjective sensuous refers to a conception of thinking that is inextricably related to the 
role that the human senses play in it. Thinking is a versatile and sophisticated form of 
sensuous action where the various senses collaborate in the course of a multi-sensorial 
experience of the world (Radford, 2009a). This multi-sensory characteristic of cognition 
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has been emphasized by philosophers like Arnold Gehlen (1988) and Maurice Merleau-
Ponty (1945) and at its heart is the idea of the important role that the body plays in the way 
we come to conceptualize things. As Gallese and Lakoff recently contended,  
the sensory-motor system not only provides structure to conceptual content, but also characterizes 
the semantic content of concepts in terms of the way that we function with our bodies in the 
world (Gallese and Lakoff, 2005, pp. 455–456). 

In tune with such views, some researchers in our field are paying attention to the embodied 
nature of mathematical cognition. This is the case with Ferdinando Arzarello and the 
Torino Team in Italy, Rafael Núñez and Laurie Edwards in the USA, Michael Roth and 
the CHAT group in Canada, the Uniban research team in Brazil, etc. To mention a brief 
example, the Uniban research team in Brazil is investigating the role of gestures in blind 
children. Here gestures and tactility come to play a crucial role in understanding 
mathematical concepts (Figure 1).  
Of course, tactility and other sensorial mediated processes are also important in non-
impaired children. Ricardo Nemirovsky has suggested that instead of being mere mental 
processes, understanding and imagination of mathematical concepts are literally embedded 
in perceptuo-motor action: the “understanding of a mathematical concept spans diverse 
perceptuo-motor activities” (Nemirovsky, 2003, I -108), so that in this regard, 
“understanding is … interwoven with motor action” (Nemirovsky, 2003, I-107). 

 
Figure 1. Exploring area, from research conducted by 
Solange Ali Fernandes and Lulu Healy with blind 
children (Ali Fernandes, 2008).  

However, thinking encompasses still much more than that. Thinking is an activity that, 
although performed by an “I” and the “I’s body”, is ubiquitously drawing on culture’s kit 
of patterns of meaning-making as well as on historically constituted concepts of an ethical, 
political, scientific, and aesthetic nature. Thinking is bound to the context and the culture 
in which it takes place. This is why it is more accurate to say that thinking in general, and 
algebraic thinking in particular, is a body-sign-tool mediated cognitive historical praxis. 
LEARNING AS OBJECTIFICATION 
From an educational perspective, the main question is: How do the students acquire 
fluency in such cognitive cultural historical praxes? How do they become acquainted with 
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the historically constituted forms of action, reflection and reasoning that those praxes 
convey? Since mathematical forms of reasoning have been forged and refined through 
centuries of cognitive activity, they are far from trivial for the students. It is the historical 
density of such praxes, sedimented now in compact, systemic, and highly abstract 
formulations, that is the basis of what Vygotsky intended with his famous distinction 
between “quotidian” and “scientific” concepts —regardless of how unfortunate 
Vygotsky’s choice of terms was. 
Reflective acquaintance with cognitive historical praxes and their concomitant forms of 
action and reasoning is what learning consists of. And, as I submitted elsewhere (Radford, 
2008a), it can be theorized as processes of objectification, that is, those social processes 
through which the students grasp the cultural logic with which the objects of knowledge 
have been endowed and become conversant with the historically constituted forms of 
action and thinking.  
Working within this theoretical framework, where semiotics, culture and history are 
driving principles, in recent years my collaborators and I have been busy in implementing 
classroom holistic activities that can offer the students a possibility to reflect algebraically 
and to get acquainted with some basic ideas of algebra in different contexts —equations, 
pattern generalization and, recently, graph interpretation (Radford, 2000, 2002b, 2003, 
2009a; 2009b; Radford, Bardini & Sabena, 2007). Our goal has been to try to understand 
what I previously referred to as the zone of emergence of algebraic thinking and forms of 
algebraic thinking elicited by our activities. 
Let me pause this theoretical discussion here and turn now to some short examples that 
come from our first longitudinal research project—a project that we conducted from 1998 
to 2003 and during which we accompanied four classes of students as they went from 
Grade 8 to Grade 12, i.e., until the completion of high school. The examples will, I hope, 
give an idea of our approach and the kind of analysis we conducted. 
SOME CLASSROOM RESULTS 
The students’ first contact with algebraic symbolism occurred when they were in Grade 8. 
In Grade 9 we decided to start with an activity that was intended as a means to revisit the 
concepts learned in the previous year. In the introductory part of the activity, the students, 
working in groups of three, had to draw Figure 4 and Figure 5 of the sequence shown in 
Figure I and to find out the number of circles in Figures 10 and 1001. In the second part of 
the activity, the students were asked to write a message to a student of another Grade 9 
class indicating how to find out the number of circles in any figure (“figure quelconque”, 
in the original French), and then to write an algebraic formula for the number of circles in 
Figure n. 

                                                 
1Figures identified with Roman numbers (e.g., Figure II) refer to objects in the article, whereas figures identified with Indo-
Arabic numbers (e.g., Figure 2) refer to elements of a pattern in the classroom activity given to the students. 

PLENARY 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6>



 

XXXIX

 
Figure I. The sequence of the introductory pattern generalization activity in Grade 9. 

Factual Algebraic Thinking 
Usually, the students start counting the number of circles in Figures 1, 2, and 3, and realize 
that, in sequences like the one shown in Figure I, the number of circles increases by the 
same number each time. However, as the students quickly notice, this recursive 
relationship between consecutive figures is not really a practical way to answer the 
question about “big” figures, like Figure 100.  
In one of the groups (formed by Jimmy, Dan, and Frank), working on the sequence shown 
in Figure I, the students imagined the figures as divided into two rows: 

1. Dan: (Referring to Figure 1) Well… (pointing to the top row) 2 on top; there, there is 3 
on the bottom… 

2. Jimmy: [Figure] 2, there are 3; [Figure] 3, there are 4. 
3. Dan: wait a minute. Ok (he makes a series of gestures as he speaks; see four of the six 

gestures in Figure II), Figure 1, 2 on top. Figure 2, 3 on top. Figure 3, 4. Figure 4, 5.  
4. Jimmy: Figure 10, it will be 11… 
5. Dan: … 11 on top, and 12 on the bottom. 
6. Jimmy: All the time it will be one more in the air. 
7. Frank: [Figure] 100? 101, 102… 
8. Dan: 203. 

  
“Figure 1 2 on top” 

  
“Figure 2 3 on top” 

Figure II. Dan makes a sequence of pointing gestures coordinated with words in a first 
process of objectification (reconstruction from the video data).  

 
As the students’ dialogue suggests, the generalization was accomplished in two steps. 
In the first step (lines 1-3), the students conceived of the figures as divided into two lines, 
and, drawing on perceptual observations made on the first three given figures, they were 
able to objectify a regularity: a relationship between the number of the figure and the 
number of circles in its rows.  
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The grasping of the regularity is not enough, however, to ensure the generalization. The 
regularity has to be generalized. And this is what the students accomplished in the 
following lines where they came up with a formula to find the number of circles in Figures 
10 and 100. Indeed: 

 In lines 4 and 5 the observed regularity of perceptually available figures was 
generalized to Figure 10, a figure that is not in the students’ perceptual field. 

 Line 6 contains a partial linguistic formulation of the general structure of the 
figures, as perceived by the students: “All the time there will be one in the air”, 
i.e., for all figures of the sequence, there is always one unmatched circle on the 
bottom row. 

 In line 7, Frank resorted to the objectified pattern structure in order to calculate 
the number of circles in Figure 100. 

The students are equipped now with a formula to answer questions about Figure 1000, 
Figure 1 000 000, or whatever particular figure you may have in mind. 
Now, I am talking about a formula, yet there are no letters! That’s true. The algebraic 
formula consists, rather, in a piece of embodied action. We can call it —borrowing an 
expression from Vergnaud (1996) and changing it slightly— an in-action-formula.  
A “formula” of this concrete form of algebraic thinking can better be understood as an 
embodied predicate with a tacit variable: indeterminacy does not reach the level of 
discourse. It is present through the appearance of some of its instances (“1”, “2”, 3”, “4”, 
“5”, “10”, “100”). It remains an empty space to be filled up by the eventual uttering of 
particular terms. We call this type of situated and concrete form of algebraic thinking that 
operates at the level of particular number or facts factual2. 
Despite its apparently concrete nature, factual algebraic thinking is not a simple form of 
mathematical reflection. On the contrary, it rests on highly evolved mechanisms of 
perception and a sophisticated rhythmic coordination of gestures, words, and symbols. The 
grasping of the regularity and the imagining of the figures in the course of the 
generalization results from, and remains anchored in, a profound sensuous mediated 
process— showing thereby the multi-modal nature of factual algebraic thinking3. 
Let us turn now to the second part of the Grade 9 activity. 
Contextual Algebraic Thinking 
In the introduction I suggested that the mathematical task at hand and the social sign-
mediated processes of perception and generalization can inform us of the form and 
generality of the algebraic thinking that is thus elicited. What kind of algebraic thinking 
will now be generated? The task requires that the students go beyond particular figures and 

                                                 
2 The adjective factual stresses the idea that this generalization occurs within an elementary layer of 
generality—one in which the universe of discourse does not go beyond particular figures, like Figure 1000, 
Figure 3245, and so on. 
3 In our current research with Grade 2 students these mechanisms of rhythmic coordination are also present, but 
they do not reach the subtle sensorial synchrony that we observe in older students as those reported here. 

PLENARY 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6>



 

XLI

deal with a new object: a general figure. Indeterminacy must now become part of explicit 
discourse. Our question is: How will the students build the formula? In the absence of 
gestures and rhythm, to which linguistic mechanisms will the students resort?  
In fact, in being asked to write a message, the students were invited to enter into a deeper 
level of objectification than the one of action and perception characteristic of factual 
algebraic thinking. Writing makes one render explicit things that may have remained on 
what neuropsychologists call the area of proto-attention, or what Husserl used to call the 
horizon of intentions (Husserl, 1954).  
In Grade 8, writing a message that involves this new object “general figure” proved to be 
very difficult. As we reported in previous work (see, e.g., Radford, 2000), the students 
often used particular figures (like Figure 12) as examples to convey a generic idea or used 
particular figures in a metaphorical sense to talk about the still unutterable generality 
(Radford, 2002a). Sometimes the message was not complete. Here is an example: “You 
add 1 [circle] on the top and 1 on the bottom.” 
In Grade 9, the students felt much more comfortable with this level of generality. The 
following message is paradigmatic of what the students wrote: "You have to add one more 
circle than the number of the figure in the top row, and add one more circle than the top 
row to the one on the bottom." 
Of course, this procedural sentence can be seen as a formula. But it is very different from 
the one discussed in the previous section. Here, rhythm and gestures have been replaced 
by key descriptive terms—“top,” “bottom.” These terms are what linguists call spatial 
deictics, that is to say, words with which we describe, in a contextual way, objects in 
space. The indeterminate object variable is now explicitly mentioned through the term 
“number of the figure.” However, although different from factual algebraic thinking both 
in terms of the way indeterminacy is handled and the semiotic means which the students 
think, the new form of algebraic thinking is still contextual and “perspectival” in that it is 
based on a particular way of regarding something4. The algebraic formula is indeed a 
description of the general term, as it was to be drawn or imagined. This is why we term 
this form of algebraic thinking contextual. Here is another Grade 9 example: “# of the 
figure + 1 for the top row and the # of the figure + 2 for the bottom. Add the two for the 
total.” 
Let us turn now to the last part of the Grade 9 activity. 
Standard algebraic thinking 
Expressing the formula in algebraic standard symbolism was much more difficult than 
expressing it in words, both in Grades 8 and 9, although, of course, there was some 
progress from one year to the next. The results mentioned in the previous section shed 
some light on the nature of these difficulties: previously, the students could resort to a 
range of semiotic resources, like pointing and iconic gestures, deictics, adverbs, etc. Those 

                                                 
4 It still supposes a spatially situated relationship between the individual and the object of knowledge that gives 
sense to expressions like “top” and “bottom”. 
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rich semiotic ressources do not have a place in the alphanumeric based algebraic formulas. 
In short, there is a drastic change in the mode of designation of the objects of discourse.  
How then to designate the number of circles in a figure, in the highly condensed semiotic 
system of alphanumeric signs? From an ontogenetic viewpoint, direct “translation” is not 
something on which we can count, as we cannot count on direct translation from our 
native language to a new one we are just starting to learn. Direct translation presupposes 
that you already know the target language. In the case of the standard alphanumeric 
algebraic language, the situation is even worse, as this language is not even “natural.” Our 
standard algebraic language is artificial. Historical analysis shows that its construction was 
preceded by a good deal of efforts that ended up in dead ends and failures (Høyrup, 2008; 
Serfati, 2006).  
In Grade 8, the students often resorted to particular examples. Thus, dealing with the 
sequence shown in Figure III, Dan and his group (in Grade 8, the group was formed by 
Dan, Frank and Sara), illustrated the formula through the case of Figure 100: 

1. Dan: You add 3 on top, and 1 at the bottom. 
2. Sara: That’s true if you go by the [form of the] figure. 
3. Dan:  You add 3 on top, and 1 at the bottom. Let’s say that n equals 100.  It 

would be 100… you add 1, it would be 101 [on the bottom row]… 
4. Frank: (Interrupting) and 103 [on the top row]. 

 
Figure III. One of the sequences the students investigated in 
Grade 8. 

 
In other cases, the students often resorted to formulas that, superficially, look to be 
algebraic, in particular because they contain letters. Thus, in the sequence shown in Figure 
III, several students in Grade 8 produced the formula 42 +×n . However, despite its 
appearance, the formula is not algebraic. It was instead obtained by trial and error. Dan 
and his group first tried 12 +×n , then 22 +×n , etc. until they obtained 42 +×n , which 
seemed to work in the few cases in which they tested it. This procedure is not based on an 
analytic way of thinking about indeterminate quantities — the chief characteristic of 
algebraic thinking. This procedure does not even reach the sophistication of pre-algebraic 
arithmetic methods such as “false position.” It is rather a kind of arithmetic naïve 
induction5. 
To counter these inductive arithmetic procedures, in the designing of the classroom 
activity, we added a question in which the students were asked to provide a formula for the 

                                                 
5 I do not have the space here to go into the details of the delicate distinction between algebraic and arithmetic 
formulas. For a detailed discussion, see (Radford, 2006, 2008). 
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number of circles on the top row of Figure n, followed by the question of finding a 
formula for the total of circles in Figure n. Establishing a functional relationship between 
the number of the figure and the number of circles on top of the figure proved very 
difficult. Dan and his group suggested using two letters: 
Dan:  (Noticing that each figure has two more circles than the previous one) It’s plus 2 [to obtain 
the number of circles in the next figure], plus 2 [to obtain the number of circles in the next 
figure], plus 2…Unless we put 2 letters… What we would do is … the top row would be n, and 
the top row would be like b. After that, you do n + b + 2. 

In this case, the letters n and b do not designate the number of circles in the top and bottom 
rows of Figure n. Actually, the number of the figure is not even taken into account. The 
formula, rather, expresses a vague recursive relationship.  
Another Grade 8 group suggested the “cascading formula” shown in Figure IV.  
 

 
Figure IV. A Grade 8 student’s formula using two letters.  

 
The first line corresponds to the number of circles on the bottom row. The result is called 
“w”. This is expressed in the second line, where it is also said that you still have to add 2 
to get the number of circles on the top row. This last number is called “x”, as indicated in 
the third line of the formula. Finally, in the last line, the students are saying that you still 
have to add the numbers represented by “w” and “x” to obtain the total of circles in Figure 
n. Not bad, although still a bit far away from the standard way to write formulas within the 
alphanumeric semiotic system of algebra. Not bad, even if the use of several letters and 
their inter-connected meanings is not fully clear for the students. As one of the students 
from this group said to the other two members, “You mix me up with all your letters!” 
The first example (Dan’s) is interesting in that it shows that, although these students were 
able to produce an inductive formula that looked like an algebraic one (i.e., “nx2+4”), they 
did not produce the expected algebraic formula “n+3” for the top row of Figure n —even 
if the formula “nx2+4” seems much more complex. The complexity of the formulas cannot 
be judged by the number of involved terms only; the complexity of the formula should 
also be judged in terms of the mode of designation of the objects of discourse. 
The second example is interesting in that it unveils some of the tremendous difficulties 
that the students have to face when using letters to intend to say what they perfectly know 
how to express in natural language. This problem is much more complex than a simple 
translation. As Glaeser remarked, the need to give an immediate meaning to every 
intermediate result has to be refrained (1999, p. 154). Meaning, indeed, has to be put in 
abeyance. 
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In Grade 9 we still found some formulas that resembled the formulas produced in Grade 8. 
But more typical of Grade 9 were the formulas shown in Figure V (these formulas 
correspond to the sequence shown in Figure I). 
 

  
Figure V. Left, the formula produced by Dan’s group in Grade 
9. Right, a variant of it produced by another Grade 9 group. 

 
Although much better than the formulas found in Grade 8, the signs in these formulas still 
keep the embodied and perspectival experience of the objectification process. We easily 
recognize in the term “n+1” the reference to the top row, as we recognize in the term 
“n+2” the reference to the bottom row. In Dan’s group, for instance, this embodied manner 
of symbolizing was made very clear: 

1. Dan: No, no, well, it’s that… n + 1 is the top row… 
2. Frank: (Interrupting) Yes, I know.  
3. Dan : n + 2 is the bottom row.  

As is clear from Figure V, the students add brackets to carefully distinguish between the 
rows. This is why, I want to suggest, the formula is an icon, a kind of geometric 
description of the figure. In other terms, the formula is not an abstract symbolic 
calculating artifact but rather a story that narrates, in a highly condensed manner, the 
students’ mathematical experience. In other words, the formula is a narrative. And it is the 
narrative dimension of the students’ iconic formulas that very often makes it possible to 
infer from the formula the sequence to which it corresponds (see figure VI).  
That which previously was distinguished through pointing gestures and linguistic deictics 
is now distinguished through the effect of signs and brackets. It is precisely this 
“perspectival” nature of the formula that leads many students to argue that brackets cannot 
be removed. Otherwise, they argue, it would be impossible to know what the terms of the 
formula mean. Yet, this is precisely what constitutes the force of algebra—the detachment 
from the context in order to signify things in an abstract way. The mode of designation has 
to move to a different layer where signs borrow their meaning not from the things they 
denote but from the relational way they mean within the context of other signs. 
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         Figure 1  Figure 2           Figure 3 

Figure VI. Formulas as narratives. Instead of decontextualized calculations, the formulas 
narrate the manner in which calculations have to be carried out in close relationship to the 
geometry of the figures and position of their parts. 

 
The narrative meaning of iconic symbolic formulas became even clearer when a fifth class 
was added to our project. As our project progressed, other teachers became interested in it 
and, to the extent that we could, we included new classes. The fifth class regrouped Grade 
8 students who were recognized as having difficulties in following the rhythm of “regular” 
math classes. Dealing with the pattern shown in Figure VII (left) one group of students 
produced the formula shown in Figure VII (right). 
 

 
Figure VII. Left, a toothpick sequence. Right, an algebraic symbolic formula 
that includes its diagrammatic “user guide” or mode d’emploi. 

 
The formula does not have the usual linear organization of standard algebraic formulas. 
Rather, signs signify in a spatial manner: as the students explained to us, the top “R” 
means that there are as many toothpicks on the top of the figure as the number of the 
figure. The “R” placed on the bottom of the formula means that there are as many 
toothpicks on the bottom of the figure as the number of the figure. The lateral “R” means 
that there are as many vertical toothpicks on the top of the figure as the number of the 
figure, but not really. There is an extra toothpick to be accounted for, placed at the right 
end, signified by the lateral sign “1.” The “+” signs mean that you have to add all of those 
things. 
FROM ICONIC FORMULAS TO SYMBOLIC ONES 
One of the important didactic problems is to implement classroom activities that will allow 
the students to endow their formulas with new abstract meanings. In more precise terms, 
the problem is to transform the iconic meaning of formulas into something that no longer 
designates concrete objects. For instance, the formula )2()1( +++ nn  mentioned previously 
(Figure V), has to be seen in a new light. The narrative dimension of formulas has to 
collapse (Radford, 2002c). The embodied meaning of the formulas does not disappear. It 
rather gives rise to a more abstract one. Thus, in addition to signifying the sum of circles in 
the top and bottom rows, the terms of the formula have to be considered in relation to the 
signs that they contain. Resemblances and differences—these key aspects of signification 
in general (Radford, 2008b)— must no longer be exclusively based on spatial and 
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contextual considerations (such as “top” and “bottom”). In the new form of signifying, 
there is a shift in focus: attention has to be directed now to morphological differences, i.e., 
differences in terms of letters versus numbers. In short, meaning must become relational. 
The search for the pedagogical actions allowing the students to objectify this abstract form 
of signifying became one of our goals, both from a theoretical and a practical viewpoint. 
Our strategy was based on comparing and simplifying formulas. Here is an example that 
deals with the sequence of squares shown in Figure VII.  
 
The previous day, the students produced several formulas. At the beginning of the class, 
the teacher asked for some examples. The students mentioned two, that were written as 

13 +⋅r  and 2)1( ⋅++ rr , where r stands for the rank or number of the figure. 

1. Teacher: I would like to compare these formulas and to see where they come 
from. Brian, do you want to explain the first formula to us? 

2. Brian: (Going to the blackboard). Ok, yesterday we saw that the first figure only 
has 1 toothpick at the bottom (he points to the bottom of Figure 1 on the 
blackboard) and the second figure, there were 2, third figure, there were 3. So, we 
added the bottom and the top, and then we saw that, in the first term, there were 2 
[vertical toothpicks] (points to the vertical toothpicks of Figure 1) and Figure 2  
has 3 (points to the vertical toothpicks of Figure 2) therefore, it’s always [the rank 
or number of the figure] plus 1. So we did the bottom plus the top plus the rank 
plus 1. And then we saw that… Well, we discussed a lot, and we saw that … it 
was the rank, rank times 3 (points towards the first term of the formula) because 
it has the bottom, the top and the vertical. There was, there was, plus [one]… 

3. Teacher: So you say that this (pointing to the bottom row of the first square and 
colouring it with blue chalk; see Figure VIII, pic. 1) is one r; this is another r 
(pointing to the top row of the first square and colouring it with blue chalk; see 
pic. 2); and this is the third r (pointing to the left vertical side of the first square 
and colouring it with blue chalk; see pic. 3) and there remains another one 
[toothpick] (pointing to the second vertical line of the first square; pic. 4). So, 
(pointing to the formula) r times 3… I have three r here (pointing successively to 
the coloured sides of the first square) plus another one in each term (pointing the 
uncoloured right vertical side of the first square). (Then, the teacher repeated the 
same set of sequence of pointing gestures on Figure 2, see Figure VIII, pics. 5-8). 
This is the explanation of the formula. Now, Ron, would you please explain the 
second formula? 
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Figure VIII. Pictures 1-4 (top) show the teacher’s effort to relate the terms of the 
formula 13 +⋅r  to the various parts of Figure 1. Pictures 5-8 (bottom) shows the 
same effort but this time the focus is on Figure 2. The teachers makes apparent for 
the students the new way of signifying through a subtle coordination of gestures, 
words, drawings and coloured segments. 

 
Ron went to the blackboard and explained the various elements of 2)1( ⋅++ rr . After that, 
the teacher encouraged a discussion about the formulas. Sandra—a student sitting at the 
end of the classroom— argued that both equations work but the first one was simpler. The 
teacher summarized the difference as follows: 

1. Teacher: the difference is that here (pointing to the formula 13 +⋅r ) we put together the 
terms that were the same and we simplified. Since I am calculating the total number of 
toothpicks, I can put all together (while talking, she emphasized the words “same”, 
“simplified” and “total”).  It is exactly this that the first formula does. (Smiling to the 
class, she says) I think that you are ready for the next activity. 

The previous formula 13 +⋅r  looks much like Dan’s formula 42 +×n  discussed earlier. 
Yet, the difference is considerable. Brian’s formula was not produced by trial and error. It 
was the result of an algebraic generalizing process where general functional relationships 
were first identified (e.g., the number of toothpicks on top vis-à-vis the rank or number of 
the figure), then simplified. As Brian put it, “… it was the rank, rank times 3 because it 
has the bottom, the top and the vertical.” The teacher capitalized on Brian’s idea and, 
through a feast of clear and consecutive gestures that echoed Brian’s timid gestures, 
coloured parts of the first two figures to make clear for all the students the relationship 
between the spatial-geometric parts of the terms and their corresponding rank (Figure VIII, 
pic. 1-8). After showing each one of the tree r on Figure 1, she linked the first part of the 
formula ( 3⋅r ) to the three parts she had just coloured. She said: “r times 3… I have three r 
here,” followed by the crucial remark that there is still “another one in each term” (which 
corresponds to the constant term of the formula). Her coordinated gestures and words 
related very well the spatial elements of the figures with the corresponding parts of the 
formula. The idea of putting together the toothpicks on the bottom, the top and the vertical 
ones, led to adding the number of the figure several times. 
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That day, after the general discussion, the students dealt with a sequence of houses (Figure 
IX). The students identified the relationship between clue elements of the figures and their 
rank or number: 

1. Raymond: the number of toothpicks in the roof is twice the number of the figure. For 
the walls [which included the floor], it is twice, and another wall  … 

2. Joyce: (Interrupting) to close the space… 
3. Raymond: So, the formula is rank times 4 plus 1. 

 

 

 

 
 

Figure IX. Left, a toothpick sequence of houses. Right, one of the students’ formulas.
 
In so doing, the students entered into a new form of algebraic understanding and moved 
into a deep region of the zone of emergence of algebraic thinking. They moved from a 
referential understanding of signs (signs as referring to particular objects, like the number 
of toothpicks in the roof) to a morphological one —the beginning perhaps of what Kieran 
(1990) Kirshner (2001), Hoch & Dreyfus (2006) and others have called the structural 
dimension of algebra. 
It is clear that the symbolic formula is no longer just iconic. Iconicity is still present, but it 
has receded to make room for a more concise and abstract form of signification. Naturally, 
the students have yet to undergo a supplementary lengthy process of objectification to 
become fluent with the modern form of symbolic algebraic thinking, where symbolic 
calculations are carried out through formal considerations only. For this to occur, new 
objects like 2x  and xx +2  will have to enter the universe of discourse and acquire a 
detached existence. It is not vain to recall here that this process was not easily achieved in 
the history of algebra. Thus, to distinguish magnitudes, Vieta—one of the founders of our 
modern algebraic symbolism—was still in the 16th century talking about “length”, “plane”, 
“solid”, etc.. Our modern way of referring to the now abstract monomials of algebra still 
reminds us of their embedded concrete beginnings. Indeed, monomials such as 2x  or 3x  
read as “x square”, “x cube”. Our modern language hangs behind the relics of its past 
revealing thereby the monomials’ original geometric-spatial origin. 
Synthesis and Concluding Remarks 
In this article, drawing on recent conceptions of thinking offered by anthropology, 
semiotics and neurosciences, I suggested that thinking is a complex form of reflection 
mediated by the senses, the body, signs and artifacts. In this view, thinking is not a kind of 
Cartesian mental activity monitored by a homunculus residing somewhere in a black box 
of ideas and representations. As the Russian philosopher Elvald Ilyekov put it, “Thinking 
is not the product of an action but the action itself” (Ilyenkov, 1977, p. 35). To a large 
extent, thinking is indeed a material process. But thinking is also more than the processes 
that a sensing body can produce. Thinking is something that is intrinsically historical and 
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cultural, and the proof is that had we happened to live in Babylonian times, we would 
have found ourselves with body and brain structures and anatomies indistinguishable from 
the ones we have today. Yet, we would have been thinking mathematically, aesthetically, 
politically, etc. in a very different way. It is this distinctive historical and cultural trait of 
thinking that I want to convey when I say that thinking in general and algebraic thinking in 
particular is a body-sign-tool mediated cultural historical praxis. 
The historical nature of cultural praxes has, as a corollary, the non-transparency of the 
forms of action, reflection and reasoning they convey. To become fluent in those praxes, 
we have to undergo lengthy processes of objectification. The creation of the conditions for 
those processes to occur is an educational problem. In the approach expounded here, the 
basic premise is that algebraic thinking cannot be confined to activities mediated by the 
standard alphanumeric semiotic system of algebra. From a semiotic viewpoint, there are 
several ways in which to analytically reason through, and to reason on, indeterminate 
quantities. More importantly, the mathematical situation and the semiotic resources that 
are mobilized to tackle it in analytic ways characterize the form and generality of the 
algebraic thinking that is thus elicited. Focusing on the context of pattern generalization, I 
suggested a classification of three forms of algebraic thinking —factual, contextual, and 
symbolic. As with most classifications, the borders of those categories are not necessarily 
well defined. Furthermore, those forms of thinking do not necessarily exclude each other. 
A student, for instance, can very well combine factual and symbolic forms of thinking. 
The typology is rather an attempt at understanding the processes that the students undergo 
in their contact with the forms of action, reflection and reasoning conveyed by the 
historically constituted praxis of school algebra. 
The classroom data presented here offers a glimpse of the ontogenetic journey of our 
students on their route to algebraic thinking. It stresses some of the challenges that they 
had to overcome when passing from factual to contextual to symbolic thinking. It stresses 
in particular the changes to be accomplished in modes of signification. While in factual 
thinking, indeterminacy remains implicit and gestures, words, and rhythm constitute the 
semiotic substance of the students’ in-action-formulas, in contextual algebraic thinking 
indeterminacy becomes an explicit object of discourse. Gestures and rhythm are replaced 
by linguistic deictics, adverbs, etc. Formulas are expressed in a perceptual and 
“perspectival” manner based on key terms like “top”, “bottom”, etc. Formulas, in short, 
are based on a particular way of seeing the sequence at hand.  
Our discussion about symbolic algebraic thinking sheds some light on the meaning with 
which the students endow their first alphanumeric formulas. Instead of being an abstract 
calculating device, formulas often appear as vivid narratives. They are icons in that they 
offer a kind of spatial description of the figure and the actions to be carried out. What I 
called the “collapse of narratives” appears as an important step towards more 
encompassing ways of algebraic signification. The constitution of meaning after such a 
collapse deserves more research (see also Barallobres, 2007). While Russell (1976) 
considered the formal manipulations of signs as empty descriptions of reality, Husserl 
stressed the fact that such a manipulation of signs requires a shift of intention: the focus 
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becomes the signs themselves, but not as signs per se. And he insisted that the abstract 
manipulation of signs is supported by new meanings arising from rules resembling the 
rules of a game (Husserl 1970), which led him to talk about signs having a game 
signification. 
The classroom example discussed in the last section shows how the teacher, through a 
complex coordination of gestures, alphanumeric formulas, and words, capitalized on the 
formula of one of the groups to make apparent for the whole class the idea of 
simplification of formulas. It was a first step, and certainly an important one in the 
students’ ontogenetic journey.  
Although I limited my account to the first two years of the 5-year journey, I hope that such 
an account is enough to get an idea of the students’ struggles and progresses towards 
increasingly more encompassing forms of algebraic thinking. 
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