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LAYERS OF GENERALITY AND TYPES OF 

GENERALIZATION IN PATTERN ACTIVITIES 

Luis Radford 
Pattern generalization is considered one of the prominent routes for in-
troducing students to algebra. However, not all generalizations are al-
gebraic. In the use of pattern generalization as a route to algebra, we  
—teachers and educators— thus have to remain vigilant in order not to 
confound algebraic generalizations with other forms of dealing with the 
general. But how to distinguish between algebraic and non-algebraic 
generalizations? On epistemological and semiotic grounds, in this arti-
cle I suggest a characterization of algebraic generalizations. This char-
acterization helps to bring about a typology of algebraic and arithmetic 
generalizations. The typology is illustrated with classroom examples.  

Keywords: Algebraic thinking; Arithmetic thinking; Generalization; Layers of 
generality; Objectification; Semiotics 

Niveles de Generalidad y Tipos de Generalizaciones en Actividades de 
Patrones 
La generalización de patrones es considerada como una de las formas 
más importantes de introducir el algebra en la escuela. Sin embargo, no 
todas las generalizaciones de patrones son algebraicas. Como 
consecuencia, en el uso de patrones como recurso didáctico, se debe 
tener mucho cuidado en no confundir generalizaciones algebraicas con 
otras formas de generalización. Ahora bien, ¿cómo distinguir entre las 
unas y las otras? En este articulo, basado en ideas epistemológicas y 
semióticas, sugiero una caracterización de generalizaciones 
algebraicas. Dicha caracterización permite establecer una tipología, la 
cual es ilustrada a través de ejemplos concretos. 

Términos clave: Estratos de generalidad; Objetivación; Pensamiento algebraico; 
Pensamiento aritmético; Semiótica 
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The most important operation of the mind is that of generalization. (C. S. 
Peirce, Collected Papers 1.82) 

Several years ago, I had the opportunity to conduct a longitudinal research in 
four Junior High-School classes about the teaching and learning of algebra. The 
timing was just perfect: The previous year, that is 1997, the Ontario Ministry of 
Education released a new mathematics curriculum based on a new type of as-
sessment, the enlargement and reorientation of knowledge content and the rigor-
ous description of the expected learning. To say the least, teachers were worried 
about the new high expectations. The time was just ripe for collaboration. There 
was a clear sense in the educational community that, in order to implement the 
new curriculum, we all had a lot to learn from each other. For me, working with 
three or four teachers every year and following the same students in the class-
room as they moved through junior and senior high school constituted a marvel-
ous opportunity.  

We designed a flexible teaching-researching agenda committed to meeting 
two main goals. First, we wanted the students to learn the algebraic concepts 
stipulated by the curriculum. This was a practical concern framed by the afore-
mentioned political educational context. Second, we wanted to deepen our under-
standing of the emergence and development of students’ algebraic thinking, the 
difficulties that the students encounter as they engage in the practice of algebra 
and the possible ways to overcome them. The longitudinal research was charac-
terized by a continuous loop which is represented in the graphic of Figure 1.  

 
Figure 1. Methodology of the longitudinal research 

Our longitudinal research was informed by the wealth of research previously 
conducted on the transition from arithmetic to algebra. In the early 1980s, Matz 
(1980) and Kaput and Sims-Knight (1983) investigated some errors associated 
with symbol use and Kieran (1981) pointed out different concepts associated 
with the equal sign. Some years later, Filloy and Rojano (1989) put into evidence 
some key problems that novice students face in solving equations. A bit later 
Sfard (1991) and Gray and Tall (1994) called attention to the students’ difficul-
ties in distinguishing between objects and processes, while Bednarz and Janvier 
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(1996) studied the effects of word problem structure in arithmetic and algebraic 
reasoning. At about the same time, several researchers showed the limits of 

YX !  numerical tables in the generalization of patterns (Castro, 1995; MacGre-
gor & Stacey, 1992, 1995). It was apparent that YX !  tables were emphasizing a 
formulaic aspect of generality based on trial and error heuristics, hence confining 
algebraic notations to the status of place holders bearing very limited algebraic 
meaning. 

The research conducted in the 1980s and 1990s —the above sketch of which 
is obviously incomplete— led to an unavoidable and difficult question asked 
again and again: that of the exact nature of algebraic thinking. Commenting on 
the Research Agenda Conference in Algebra (Wagner & Kieran, 1989), held in 
March 1987 at the University of Georgia, Kieran (1989, p. 163) said: “One of the 
topics pointed to in the Research Agenda… as an area sorely in need of research 
attention is that of algebraic thinking.” Certainly, since then, the several studies 
conducted by mathematics educators and historians have made an important con-
tribution to this area (e.g., Arzarello & Robutti, 2001; Boero, 2001; Carraher, 
Schliemann & Brizuela, 2000; Høyrup, 2002; Lee, 1996; Lins, 2001; Martzloff, 
1997; Puig, 2004; Ursini & Trigueros, 2001). And if we still do not have a sharp 
and concise definition of algebraic thinking, it may very well be because of the 
broad scope of algebraic objects (e.g., equations, functions or patterns) and proc-
esses (e.g., inverting or simplifying) as well the various possible ways of con-
ceiving thinking in general.  

It is clear that algebraic thinking is a particular form of reflecting mathemati-
cally. But what is it that makes algebraic thinking distinctive? Trying to come up 
with a working characterization to guide our research, we adopted the following 
non-exhaustive list of three interrelated elements. The first one deals with a sense 
of indeterminacy that is proper to basic algebraic objects such as unknowns, 
variables and parameters. It is indeterminacy (as opposed to numerical determi-
nacy) that makes possible for example the substitution of one variable or un-
known object for another; it does not make sense to substitute 3  by 3 , but it may 
make sense to substitute one unknown for another under certain conditions. Sec-
ond, indeterminate objects are handled analytically. This is why Vieta and other 
mathematicians in the 16th century referred to algebra as an analytic art. Third, 
that which makes thinking algebraic is also the peculiar symbolic mode that it 
has to designate its objects. Indeed, as the German philosopher Immanuel Kant 
suggested in the 18th century, while the objects of geometry can be represented 
ostensively, unknowns, variables and other algebraic objects can only be repre-
sented indirectly, through means of constructions based on signs (see Kant, 1929, 
p. 579). These signs may be letters, but not necessarily. Using letters does not 
amount to doing algebra. The history of mathematics clearly shows that algebra 
can also be practiced resorting to other semiotic systems (e.g., colored tokens 
moved on a wood tablet, as used by Chinese mathematicians around the 1st cen-
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tury BC and geometric drawings as used by Babylonian scribes in the 17th cen-
tury BC). 

Drawing on the working characterization of algebraic thinking sketched 
above and the then-emerging Vygotskian perspective in mathematics education 
(Bartolini-Bussi, 1995; Lerman, 1996), we formulated our research problem in 
semiotic terms. Starting from a broad conception of signs, we wanted to investi-
gate the students’ use of signs and processes of meaning production in algebra. 
Naturally, contemporary curricula favor the alphanumeric algebraic symbolism. 
It was our contention, however, that, ontogenetically speaking, the students’ for-
mation of the corresponding meanings and rules of sign-use were rooted in other 
semiotic systems that they had already mastered. Since the history of mathemat-
ics suggests that, in some cultural traditions, the evolution of some algebraic no-
tations relied heavily on speech (Radford, 2001), we had strong reasons to look 
to language for the antecedents of the students’ alphanumeric algebraic mean-
ings. The results that we obtained during the first years confirmed our hypothe-
sis, but, as we shall see in a moment, we also came to realize that language was 
only part of the story. 

In this paper, I want to present an overview of some of our results. Although 
our general goal was to investigate the various aspects of students’ algebraic 
thinking, as related to the algebraic concepts stipulated by the Ontario curricu-
lum, for the sake of simplicity, I will focus here on the generalization of patterns 
only (some results concerning equations can be found in Radford, 2002a, 2002b; 
Radford & Puig, 2007).  

First, I suggest making a distinction between generalization and (naïve) in-
duction. I will claim that, just as not all symbolization is algebraic, not all pat-
terning activity leads to algebraic thinking. I will argue in particular that this is 
the case for inductive reasoning (as frequently used by the students), even if the 
inductive process can be expressed in symbols, such as 12 +n . I will even go fur-
ther and claim that, among the possible forms of generalization, not all are alge-
braic in nature (there are some pattern generalizations that are arithmetic but not 
algebraic, a point that I discuss later in the paper). One practical result that comes 
out of this is the following. In the use of patterning activities as a route to alge-
bra, we —teachers and educators— have to remain vigilant in order not to con-
found algebraic generalizations with other forms of dealing with the general; we 
also have to be equipped with the adequate pedagogical strategies to make the 
students engage with patterns in an algebraic sense.  

Then, I discuss the theoretical construct of knowledge objectification, which 
I use in the subsequent sections to give an account of the students’ sign use and 
meaning production in classical pattern activities. 
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TOWARDS A DEFINITION OF ALGEBRAIC GENERALIZATION 

OF PATTERNS 
One of the introductory activities to algebraic symbolism that we proposed to 
Grade 8 students included the classical pattern shown in Figure 2. 

 
Figure 2.1 Figure 2.2 Figure 2.3 

Figure 2. The sequence of figures given to the students in a Grade 8 class1 
At the beginning of the activity, the students —who always worked in small 
groups of two to four— were required to find the number of circles in Figure 
2.10 and in Figure 2.100. Their strategies fell into two main categories. 

In the first one, the heuristic is based on trial and error: The students pro-
posed simple rules like “times 2 plus 1”, “times 2 plus 2” or “times 2 plus 3” and 
check their validity on a few cases. The symbolization of the rule may vary. Here 
is one provided by one of our small groups: )3(2 +!n . When the students of this 
small group were asked to explain how they found this rule, they said: “We 
found it by accident.” 

In the second one, the students searched for a commonality in the given fig-
ures. Mel, for instance, wrote: “The top line always has one more circle than the 
number of the figure and the bottom line always has two circles more than the 
number of the figure.” Mel’s formula was: =+++ )2()1( nn . 

Although both procedures lead to the use of symbolism, the heuristics are in-
commensurately different. The latter rests on noticing certain common features 
of the given figures and generalizing them to the figures that follow in the se-
quence. In contrast, the former rests on a rule formed by guessing. Rules formed 
in this way are in fact hypotheses. This way of reasoning works on the basis of 
probable reasoning whose conclusion goes beyond what is contained in its prem-
ises. In more precise terms, it is a type of induction —a type that I will qualify as 
naïve to distinguish it from other more sophisticated types of induction2. Thus, 
instead of generalizing something, when resorting to the first procedure, the stu-
dents merely make an induction and not a generalization. Due to the students’ 
strong tendency to use inductive procedures instead of generalizing ones, we 

                                                
1 Editor’s note: The figures inside Figure 2, Figure 4, and Figure 5 were originally given to the 
students as Figure i, where i is the position of the figure on its sequence. This has been changed 
in order to follow the numbering of the figures in this paper. For example, Figure 2.3 was origi-
nally numbered as Figure 3.  
2 The concept of induction has been the object of a vast number of investigations in epistemol-
ogy and in education; see e.g., Peirce in Hoopes (1991, pp. 59-61); Polya (1945, pp. 114-121); 
Poincaré (1968, pp. 32 ff.). In what follows, to simplify the text, I will use induction to refer to 
the students’ naïve induction described above. 
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proposed some patterns with decimal numbers. One of those patterns was the fol-
lowing: 0.82, 1.13, 1.44, 1.75, 2.06… Here, the possible values of a and b  in the 
rule “ ban + ” (or “ ban +! ” as the students would write) increase considerably 
making trial and error; a heuristic which is no longer viable. As one of the stu-
dents commented after failing at several trial and error guesses, “I got more 
numbers in my head than ever.”  

The comparison of the two aforementioned strategies emphasizes an impor-
tant distinction between induction and generalization, a difference that is often 
overlooked and that ends up calling something generalization while in reality it is 
simply an induction (Peirce, CP 2. 429). At the same time, it suggests one of the 
traits that may constitute the core of the generalization of a pattern, namely the 
capability of noticing something general in the particular, a trait upon which 
Love (1986), Mason (1996) and others have previously insisted. 

Kieran, however, claimed that this trait alone may not be sufficient to charac-
terize the algebraic generalization of patterns. She argued that in addition to see-
ing the general in the particular, “one must also be able to express it algebrai-
cally” (Kieran, 1989, p. 165). To understand Kieran’s objection, we should bear 
in mind that usually, the generalization of patterns as a route to algebra rests on 
the idea of a natural correspondence between algebraic thinking and generalizing. 
Kieran took argument against the alleged natural character of this correspon-
dence and contended that to think algebraically is more than thinking about the 
general. It is to think about the general or the generalized in a way that makes it 
distinctively algebraic in its form of reasoning as in its expression. As she put the 
matter, “a necessary component [of algebraic generalization] is the use of alge-
braic symbolism to reason about and to express that generalization.” (Kieran, 
1989, p. 165) 

I concur with Kieran’s exigency concerning the inclusion of one’s ability to 
express the general. Following a Vygotskian thread to which I shall return in the 
next section, what I would like to add here is that algebraic generality is made up 
of different layers —some deeper than others. Furthermore, the scope of the gen-
erality that we can attain within a certain layer is interwoven with the material 
form that we use to reason and to express the general (e.g., the standard alpha-
numeric algebraic semiotic system, natural language or something else). 

In this line of thought, I want to suggest the following definition. Generaliz-
ing a pattern algebraically rests on the capability of grasping a commonality no-
ticed on some elements of a sequence S, being aware that this commonality ap-
plies to all the terms of S and being able to use it to provide a direct expression of 
whatever term of S. 

In other words, the algebraic generalization of a pattern rests on the noticing 
of a local commonality that is then generalized to all the terms of the sequence 
and that serves as a warrant to build expressions of elements of the sequence that 
remain beyond the perceptual field. The generalization of the commonality to all 
the terms is the formation of what, in Aristotelian terminology, is called a genus, 
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i.e., that in virtue of which the terms are held together (see e.g., Aristotle’s Cate-
gories, 2a13-2a18). Direct expression of the terms of the sequence requires the 
elaboration of a rule —more precisely a schema in Kant’s terms (Radford, 
2005a). I will come back to this definition later. For the time being, I want to 
stress two main elements involved in the definition. On the one hand, there is a 
phenomenological element related to the grasping of the generality. On the other 
hand, there is a semiotic element related to the expression through signs of what 
is noticed in the phenomenological realm. In the next section, I will argue that 
these two elements are interrelated and that they may be investigated through two 
theoretical constructs —knowledge objectification and the concomitant semiotic 
resources to achieve it. 

KNOWLEDGE OBJECTIFICATION 
For the novice student, noticing the underlying commonality of the terms of a 
pattern is not something that happens all of a sudden. On the contrary, it is a 
gradual process underpinned by a dynamic distinction between the same and the 
different. Even in a pattern as simple as the previous one (see Figure 2), there are 
several ways to look for what may qualify as the same and the different in the 
given figures. Thus, talking to his two group-mates, Doug —a Grade 9 student—
says: “So, we just add another thing, like that”. At exactly the moment he utters 
the word “another”, he starts making a sequence of six rhythmic parallel gestures 
(see Figure 3). 

Figure 3. Excerpt of Doug’s sequence of rhythmic gestures  
Naturally, the figures all have the same shape, but at the same time, they are dif-
ferent: That which makes them different, Doug is suggesting, is the last two cir-
cles diagonally disposed at the end of each figure (see Figure 4). 

 
Figure 4.1 Figure 4.2 Figure 4.3 

Figure 4. Doug emphasizes the last two circles  
As we can see in Figure 4, Doug makes an attempt to notice a commonality in 
the terms of the sequence, emphasizing the last two circles. We see hence that 
Doug’s grasping of the commonality is different from Mel’s (see previous sec-
tion); so too is Doug’s expression of it. While Mel saw the figures as made up of 
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two horizontal lines and expressed generality in a verbal form, Doug saw the fig-
ures as recursively built by the addition of two circles diagonally arranged and 
expressed it dynamically through gestures and words. 

In more general terms, what we observed in the classroom from the first day 
was that the perceptual act of noticing unfolds in a process mediated by a multi-
semiotic activity (spoken words, gestures, drawings, formulas, etc.) in the course 
of which the object to be seen emerges progressively. This process of noticing I 
have termed a process of objectification.  

The term objectification has its ancestor in the word object, whose origin de-
rives from the Latin verb obiectare, meaning “to throw something in the way, to 
throw before”. The suffix –tification comes from the verb facere meaning “to 
do” or “to make”, so that in its etymology, objectification becomes related to 
those actions aimed at bringing or throwing something in front of somebody or at 
making something apparent —e.g., a certain aspect of a concrete object, like its 
color, its size or a general mathematical property. Now, to make something ap-
parent, students and teachers make recourse to signs and artefacts of different 
sorts (mathematical symbols, graphs, words, gestures, calculators and so on). 
These artefacts, gestures, signs and other semiotic resources used to objectify 
knowledge I call semiotic means of objectification (a detailed account can be 
found in Radford, 2002c; 2003). 

In our previous example, Doug started making apparent a general mathe-
matical structure —he started objectifying it. To accomplish this, Doug resorted 
to two semiotic means of objectification: words and gestures. In addition, to 
highlighting the last two circles, the rhythmic repetition of gestures allowed 
Doug to achieve something notable: Through this, Doug expressed the idea of 
something general, something that continues further and further, in space and in 
time. 

I am not suggesting, though, that Doug’s six gestures and one utterance were 
enough to fully disclose the mathematical structure behind the pattern. Neither 
am I affirming that Doug was providing a direct expression of whatever term of 
the sequence. What I am saying is that the objectification of the general goes 
through various layers of awareness. To get a better grasp of the structure behind 
the pattern, Doug’s process of objectification had to continue. Through mediating 
signs, Doug continued engaging with the object of knowledge and signifying 
generality in more precise terms. It is obvious that the sense of generality 
achieved through words and gestures is not the same as the one achieved through 
a formula or a graph. A semiotic system provides us with specific ways to signify 
or to say certain things, while another semiotic system provides us with other 
ways of signification. The linguist Émile Benveniste referred to this situation as 
the principle of nonredundancy: “Semiotic systems”, Benveniste said, “are not 
‘synonymous’; we are not able to say ‘the same thing’ with spoken words that we 
can with music, as they are systems with different bases.” (Benveniste in Innis, 
1985, p. 235). The same distinction is true of gestures and formulas. 
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By the same token, Benveniste’s nonredundancy principle warns us against 
the common belief in translatability —the belief that e.g., a formula says the 
same thing as its graph, or that a formula says the same thing as the word-
problem it “translates” (see e.g., Duval, 2002; Radford, 2002b). The nonredun-
dancy principle does not mean, however, that what we intend or express in one 
semiotic system is completely independent from what we express in another one. 
The objectification of the mathematical structure behind a pattern that was medi-
ated by words and gestures may be deepened by an activity mediated through 
other types of signs.  

As previously described, the objectification of knowledge is a theoretical 
construct to account for the way in which the students engage with something in 
order to notice and make sense of it. By focusing on the students’ phenomenol-
ogical mathematical experience, it emphasizes the subjective dimension of know-
ing. But this is only half of the story. Since we are sociocultural knowers, objec-
tification takes also account of the social and cultural dimensions of knowing. 
The concept of knowledge objectification rests indeed on the idea that class-
rooms are not merely a bunch of external conditions to which the students must 
adapt. Classrooms are rather seen as interactive zones of mediated activities con-
veying scientific, ethical, aesthetical and other culturally and historically formed 
values that the students objectify through reflective and active participation (Rad-
ford, 2008). In these activities, embedded in cultural, historical traditions, the 
students relate not only to the objects of knowledge (the subject-object plane), 
but also to other students through face-to-face, virtual or potential communica-
tive actions (the subject-subject plane or plane of social interaction).  

Within the previous theoretical context, our investigation of the students’ use 
of signs and processes of meaning production in algebra focused on a detailed 
study of the students’ knowledge objectification as they moved along different 
layers of generality and awareness. Guided by our definition of algebraic gener-
alization and theoretical framework, some of the research questions that we tack-
led were the following: 

! How do the students grasp the commonality in a pattern? 
! What are the mechanisms (linguistic or others) through which the students 

generalize the locally observed commonality to all the terms of the se-
quence? 

! How do they express generality? 
In the rest of this paper, I discuss these questions focusing particularly on the 
work done by one of the Grade 8 (13-14 years old) and also one of the Grade 9 
(14-15 years old) small-groups which are representative of most of the work 
done by other groups.  
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GENUS FORMATION:  
GRASPING AND GENERALIZING A LOCAL COMMONALITY 

Roughly speaking, our classroom activities were organized along the two afore-
mentioned subject-object and subject-subject planes as follows: 

The students were presented with patterns whose complexity was commen-
surate to the curriculum requirements. Working in small groups, the students 
were invited to carry out: 

! An arithmetic investigation (often conducted by continuing the pattern on 
the basis of some given information, as well as answering questions about 
specific figures such as those in position 10, 25 and 100); 

! the expression of generalization in natural language (in the form of a mes-
sage), and 

! the use of standard algebraic symbolism to express generality. 
Among the patterns that we selected, there were some classical circle and tooth-
pick patterns (such as those shown in Figure 2 and Figure 5) and variations of 
increased difficulty as the students moved through their junior and senior high 
school years (see Bardini, Radford, & Sabena, 2005). 

 
Figure 5.1 Figure 5.2 Figure 5.3 

Figure 5. An example of a toothpick pattern 
As indicated before, using different techniques, the students usually succeeded in 
answering questions about figures in positions 10, 25, and 100, etc. Let us put 
aside the inductive, non generalizing techniques, and focus on the generalizing 
strategies only. 

When adolescent or younger students tackle questions about “big” figures, 
such as figures in positions 25 or 100, a frequent strategy consists in noticing a 
recurrent relation between consecutive figures (see e.g., Castro, 1995 and War-
ren, 2006, respectively). This typical strategy is illustrated in the following ex-
cerpt from a Grade 8 small-group, concerning figure in position 25 of the tooth-
pick pattern:  
Judith: The next figure has two more than… look… [figure] 6 is 13, 13 plus 2. 

You have to continue there… 
Anik: Well, you can’t always go plus 2, plus 2, plus 2... 
Judith: But of course! That’s figure 7, plus 2 equals figure 8. 
Josh: That will take too long! 
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As the dialogue implies, the students noticed that the terms of the sequence in-
crease by two. Furthermore, the dialogue provides us with a clear indication that, 
for the students, this common increment applies not only to the terms that were 
explicitly mentioned but also to the terms that followed. One unambiguous indi-
cator is the expression: “you have to continue there”. However, up to this point, 
the students did not make use of the already-noticed regularity to provide an ex-
act value for the number of toothpicks in figure in position 25. Actually, as 
Josh’s intervention indicates, they were aware that their procedure was unpracti-
cal. According to our definition of algebraic generalization, the students have not 
yet stepped into the realm of algebra. They did generalize something but are still 
in the realm of arithmetic. What they generalized was a local commonality ob-
served on some figures, without being able to use this information to provide an 
expression of whatever term of the sequence. A generalization of this kind I will 
call arithmetic generalization.  

Trying to come up with another strategy, Josh proposed a more direct proce-
dure: 
Josh: It’s always the next. Look! [Then, pointing to the figures with the pencil 

he says] 1 plus 2, 2 plus 3… 
Anik: So, 25 plus 26... 
Josh’s assertion shows the moment at which he realized that there was a different 
commonality linking the number of toothpicks in a figure and the sum of the 
ranks of two consecutive figures. The utterance “It’s always the next” (my em-
phasis) indicates Josh’s awareness that this commonality applies to all the terms. 
Drawing on Josh’s idea, Anik was then able to directly provide an expression for 
the value of figure 25. Thus, the students here made an algebraic generalization 
—one that in a previous work (Radford, 2003) I have referred to as factual gen-
eralization. 

The adjective factual stresses the idea that this generalization occurs within 
an elementary layer of generality —one in which the universe of discourse does 
not go beyond particular figures, like the one in position 1,000, 1,000,000, and so 
on. This layer of generality is rather the layer of action: The genus of the se-
quence leads to the formation of a schema that operates on particular numbers 
(e.g., “1 plus 2, 2 plus 3”, see Josh’s assertion). Another way to say this is that in 
factual generalizations, indeterminacy —the first characteristic of algebraic 
thinking mentioned at the beginning— does not reach the level of enunciation: it 
is expressed in concrete actions (see also Vergnaud’s (1996) ! theorem-in-act). 

Of course, the students had pragmatic reasons to remain bounded to the fac-
tual level of generality. Factual generalization was good enough to get the an-
swers that we asked of them. This was not to be the case when the students tack-
led the next question. Before going there, I want to discuss another excerpt, from 
a Grade 9 class, dealing with the sequence shown in Figure 2. 
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This group was formed by three students: Jay, Mimi (sitting side by side) and 
Rita (sitting in front of them). Prior to the excerpt that I am going to present, the 
students found that the number of circles in figures in positions 10 and 100 was 
23 and 203 respectively. They perceived the given figures as formed by two 
horizontal rows, generalized this commonality to the other figures of the se-
quence and formed a factual generalization (“11 and 12”, “101 and 102”; see Sa-
bena, Radford, and Bardini, 2005). However, Mimi was intrigued by the fact that 
the digit 3 was at the end of the answers. In the excerpt which follows she tries to 
come up with another generalizing schema that would include the digit 3 and the 
number of the figure: 
Mimi: Add… Add three to the number of the figure! [Pointing to the results 23 

and 203 already written on the paper]. 
Jay: No! 101 [meaning the top row of figure in position 100], 100 [meaning 

figure in position 100] and you got that, 203. 
In her intervention, Mimi tried to formulate a new schema. As Jay quickly no-
ticed, the schema is faulty. Jay’s utterance was followed by a long pause (5.2 
seconds) during which the students silently looked at the figures. Jay became in-
terested in Mimi’s idea but, like Mimi, still did not see the link in a clear way. 

Trying to come up with something, while putting his pen on the figure and 
echoing Mimi’s utterance, Jay pensively said: “Add 3”. At the same time, Mimi 
moved her finger to the firs figure (close to Jay’s pencil) and said: “I mean like… 
I mean like…” (see Figure 6).  

 
Figure 6. Jay and Mimi pointing at the first figure 

Jay and Mimi tried to notice a commonality through the first Figure 2.1 of Figure 
2. Right after she intervened again and said: “You know what I mean? Like… for 
Figure 2 (making a gesture; see Figure 7, left) you will add like (making another 
gesture; see Figure 7, right)…” 

To explore the role of digit 3, Mimi made two gestures. The first one has an 
indexical-associative meaning: It indicates the first circle on the top of the first 
row and associates it to the first figure (Figure 7, left). The second one achieves a 
meaningful link between digit 3 and three “remarkable” circles in the figure 
(Figure 7, right). Although Mimi has not mentioned or pointed to the first circle 
on the bottom row, the circle has been noticed; i.e., although the first circle on 
the bottom has remained outside the realms of word and gesture, it has fallen into 
the realm of vision. Indeed, right after finishing her previous utterance, Mimi 
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starts with a firm “OK!” that announces the recapitulation of what has been said 
and the opening up towards a deeper level of objectification, a level where all the 
circles of the figures will become objects of discourse, gesture and vision. She 
says: 

OK! It would be like one (indexical gesture on Figure 2; see pictures of 
Figure 7), one (indexical gesture on Figure 8; see picture on the right), 
plus three (grouping gesture; see picture on Figure 9); this (making the 
same set of gestures but now on the second figure of the sequence of 
Figure 2) would be two, two, plus three; this (making the same set of 
gestures but now on the third figure of the sequence) would be three, 
three, plus three. 

for the first figure you will add 

  

  
Figure 7. Perceptual objectifying effects of word and gesture on Figure 2.1 

  
Figure 8. Mimi made an indexical gesture on Figure 2.1 

Mimi used an indexical gesture (Figure 8) to indicate the first circle on the top 
row and the first circle on the bottom row of Figure 2.1. 

 
Figure 9. Mimi made a grouping gesture  

Mimi made a grouping gesture (Figure 9) to put together the last three circles of 
Figure 2.1. Making two indexical gestures and one grouping gesture that sur-
rounds the three last circles on the first figure of Figure 2, Mimi rendered a spe-
cific configuration visible to herself and to her group-mates. This set of three 
gestures was repeated as she moved to the second and third figures of Figure 2. 
In so doing, Mimi made apparent a local commonality. Now, how did she man-
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age to generalize it to all the terms of the sequence? We are here at the kernel of 
the generalization process. To answer this question, let us pay attention to 
Mimi’s semiotic means of objectification.  

We have already noted the crucial objectifying role of gestures. However, 
Mimi’s gestures were accompanied by the same sentence structure (see Figure 
10). Through repetition and a coordination of gestures and words, Mimi general-
ized a locally perceived commonality to the other figures and moved from the 
particular to the general. 

 

« one, 
   one, 
   plus three » 

« two, 
   two, 
   plus three » 

« three, 
   three, 
   plus three » 

 
Figure 10. Mimi’s objectification of a new genus of the sequence 

But in fact, in addition to gestures and words there was also rhythm. Rhythm was 
also present in Anik’s utterance quoted in the first example of this section. 
Rhythm creates the expectation of a forthcoming event (You, 1994) and consti-
tutes a crucial semiotic means of objectification to make apparent the feeling of 
an order that goes beyond the particular figures (for a detailed discussion of 
rhythm see Radford, Bardini, & Sabena, 2007). 

Mimi’s generalization was hence forged with words, gestures and rhythm. 
Her generalization led to a schema through which the students were able to di-
rectly determine the number of circles in any particular figure. It is a factual gen-
eralization. 

SHOWING VERSUS SAYING 
Let us now discuss how students tackled the question concerning the expression 
of generality in natural language. The students were asked to write a message ex-
plaining how to find the number of toothpicks or circles in any figure to an 
imaginary student in another class of the same level. The level of generality that 
is required here is of course greater; for one thing, factual generalizations are no 
longer sufficient.  

In Josh’s group, Anik suggested a first idea: 
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We can say, like, it’s the number of the figure, right? Like, let’s say it’s 1 
there. If… if… OK. You add… like, how do you say that? In order of… 
(Then, implicitly referring to Figure 3, she says) You add it by itself, like. 
You do 2 plus 2, then after this, plus 1, like. You always do this, right? 
You would do (while she rhythmically mentions the numbers to reveal 
the underlying commonality, she gestures as if pointing to something) 3 
plus 3… plus 1, 4 plus 4… plus 1, 5 plus 5… plus 1. Do you know what I 
want to say? How do we say it then? 

The problem, as Anik mentioned, is how to express in words something general 
that is nonetheless easy to show through numbers and gestures. There is, in fact, 
a profound gap between showing and saying. The expression of the genus of the 
sequence (be it the first one objectified earlier by this group, based on the addi-
tion of consecutive ranks of figures, or the new one, suggested by Anik here) 
now has to fall in the realm of language. Indeterminacy has to be named. 

After a series of unsuccessful efforts, Anik came back to their previous fac-
tual generalization:  
Anik: Yes. Yes. OK. You add the figure plus the next figure… No. Plus the… 

(she writes as she says) You add the first figure… 
Josh: [Interrupting and completing Anik’s utterance says]… [to] the second 

figure… 
Anik: So... [Inaudible]. It’s not the second figure. It’s not the next figure? 
Josh: Yes, the next one [figure]. 
Judith: Uh, yes, the next [figure]… 
Anik:  [Summing up the discussion] You add the figure and the next figure. 
To name indeterminacy in the message, the students transformed the expression 
“any figure” (as mentioned in the question) into “the figure” —a linguistic ge-
neric expression that does not designate a particular term of the sequence but 
whatever term you want to consider. The concrete actions on which the students’ 
previous factual generalizations were based (“1 plus 2”, etc.) appear now as a 
single action, as an action in abeyance: “You add the figure and the next figure.” 

The above generalization is located at a deeper layer of generality, one in 
which rhythm and ostensive gestures have been excluded. The students have to 
work here with reduced forms of expression. At the same time, to succeed at this 
level of generality, the students have to compensate for the reduction of semiotic 
resources with a concentration of meanings in the fewer number of signs (words) 
through which the generalization is now expressed. This reduction of signs and 
concentration of meanings constitutes a semiotic contraction (Radford, 2002c; 
see also Duval, 2002). 
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To distinguish these kinds of generalizations from factual ones, I termed 
them contextual generalizations (Radford, 2003). They are contextual in that 
they refer to contextual, embodied objects, like “the next figure” which supposes 
a privileged viewpoint from where the sequence is supposedly seen, making it 
thereby possible to talk about the figure and the next figure. 

The expression of generality beyond the level of factual generality has been 
investigated in the context of early algebra research. At the PME 2006 Confer-
ence, Elizabeth Warren reported a study with Grade 5 students (10 years old). 
Among other things, she asked the students to write in natural language the gen-
eral rule for some patterns and found that between 6 and 10 students out of 27 
were able to write a relationship between the position of the term and its numeri-
cal value, while between 16 and 21 students failed to do so (Warren, 2006). At 
the same conference, Ferdinand Rivera reported results from a research project 
conducted with Grade 6 students (11 years old) (Rivera, 2006). The students 
were presented with a slightly modified version of the sequence shown in Figure 
2. The terms started with one circle and increased by two circles. The students 
had to write a message to an imaginary Grade 6 student clearly explaining what 
s/he must do in order to find out how many circles there were in any given figure 
of the sequence. Two answers were the following: 
Student 1: You start at one and keep adding two until you get the right number 

of circles in all.  
Student 2: You look at the figure number and then draw the number of circles 

then going up you put a # [number] less then add it all together. 
There are several interesting features in the answers. Student 2 took advantage of 
the geometric shape of the figures to form a genus of the sequence and provided 
a contextual generalization, the embodied dimension of which appears in the 
situated description of the actions as in “going up”. Student 1 formed a different 
genus: the common increment of two circles between figures. However, the stu-
dent did not provide a direct expression for any given figure. This is hence an ex-
ample of an arithmetic generalization that does not reach an algebraic character. 

Let us come back to Mimi’s group. The students continued refining the fac-
tual generalization that we discussed in previous section. Mimi said: 
Mimi: The number of the figure like... we’ll say that the figure is 10 (gesture 

with an open hand as to indicate a row on the desk), you’ll have ten dots 
(similar gesture on the desk) plus three (sort of grouping gestures a bit 
more to the right and to the bottom, on the desk) right? (pause) No… 

Jay: [Almost simultaneously] No. 
Mimi: [Interrupting] You double the number of the figure.  
Jay: Ten plus ten [pointing to the sheet]. 
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Mimi: So it will be twenty dots plus three [pointing to the number 23 on the 
sheet]. You double the number of the figure and you add three, right? So 
figure 25 will be fifty...three. Right? That’s what it is… 

Jay: Figure times two plus three. 
The written message was the following: “The number of the figure 3,2 +! . It 
gives you the amount of circles.” 

The message is a mixture of mathematical symbols and terms in natural lan-
guage. Undoubtedly, the comma is the most interesting element: It translates, in a 
written form, the spatial and temporal characteristics of one crucial distinctive 
event objectified in the course of the students’ mathematical experience, namely 
the distinction between the same and the different elements in the figures, as the 
students perceived them. 

WRITING LITTLE WHILE SAYING A LOT 
In Josh’s group, expressing the generalization through alphanumeric symbols  
—what I have called a symbolic generalization (Radford, 2003)— was a com-
plex process during the course of which the students had to decide about the 
meaning of letters. One particular problem was to decide how to say “the next 
figure”. The following excerpt illustrates some of the difficulties: 

That would be like an +  or something else, nn +  or something else. Anik: 
Well [no] because “ a ” could be any figure… You can’t add your 9 plus 
your… like... You know, whatever you want it has to be your next [fig-
ure]. 

When the students reached an impasse, the teacher intervened: “If the figure I 
have here is ‘ n ’, which one comes next?” Thinking of the letter in the alphabet 
that comes after n , Josh replied: “o ”. In the end they ended up with the follow-
ing formula: nn ++ )1( .The formula in Jay’s group was as follows: 32 +!n . 
Formed out of a commonality noticed through a complex coordination of hands 
in space, rhythm, nouns, deictics and adverbs, the formula reached here an ex-
tremely concise expression. The “space” to be occupied by each one of its five 
signs (i.e. n , ! , 2, +, and 3) was progressively prepared by the students’ previ-
ous joint mathematical experience. Thus, the symbolic letter n  is the “semiotic 
contraction” of the “number of the figure” that has been so often quoted before, 
either directly or by means of examples. In fact, the whole formula is the crystal-
lization of a semiotic process endowed with its situated history. It is a history in 
which each sign acquired a distinctive meaning and which may explain why the 
students do not simplify the formula into the more standard expression: 32 +n . 
The formula still hangs behind the remnants of the narrative side of algebra 
(Radford, 2002b), where signs play the role of narrating a story and where the 
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formula has not yet reached the autonomy of a detached symbolic artifact. The 
letters of which a formula is made up play indeed the role of indexes pointing to 
words of the students’ contextual and factual generalizations. 

Obviously, some students’ formulas do not correspond to the standard alge-
braic syntax. Thus, dealing with the sequence shown in Figure 2, Samantha, one 
Grade 8 student, managed to produce a contextual generalization: “You must add 
1 more than the figure for the top and 2 more on the bottom.” Her formula was: 

=++ 2)1(n . Now, despite its inaccurate algebraic syntax, the formula was not 
written at random. A closer look at the formula indeed suggests that the formula 
does have a meaning. The formula was built following a syntax based on the cri-
terion of juxtaposition of signs. It is a sentence structured in the manner of a nar-
rative where signs become encoded as key terms (much as ideograms did in the 
written language used in Mesopotamia ca 3500 BC —where, e.g., the drawing of 
a foot after the drawing of a mountain in a clay tablet could mean a long walk). 
The formula is recounting us Samantha’s mathematical experience with the gen-
eral. The composed term 1+n  is telling us that, to determine the number of cir-
cles on the top row, we have to add 1 more (circle) than the (number of the) fig-
ure, and that once we have finished doing this (something scrupulously indicated 
by the brackets), we still have to add two (circles) to the bottom row. Now, by 
adding these results, we may be in a position to find the total number of circles in 
the figure. The inaccuracy of algebraic syntax cannot be imputed to Samantha’s 
misunderstanding of the problem: She succeeded in finding the number of circles 
in figure of position 10 and position 100. Had we asked her questions about 
“bigger” figures, like figure in position 1,000,000, she would have provided the 
right answers. The problem lies elsewhere. It lies in the students’ understanding 
of a cultural mathematical practice based on a specific use of signs.  

SYNTHESIS AND CONCLUDING REMARKS 
Noticing a commonality in a few particular terms of a sequence is by no means 
the result of a contemplative act. As Kant put it: 

I see a fir, a willow, and a linden. In firstly comparing these objects, I 
notice that they are different from one another in respect of trunk, 
branches, leaves, the like; further, however, I reflect only on what they 
have in common… and abstract from their size, shape, and so forth; thus 
I gain a concept of tree. (Kant, 1974, p. 100) 

Our ability to notice differences in things is one of our basic cognitive compo-
nents. Without it, we would be unable to sort the amazing amount of sensorial 
stimuli that we receive from the exterior and the world in front of us would be 
reduced to an amorphous visual, tactile and aural mass. Naturally, as many of 
Kant’s commentators have pointed out, things are a good deal more complicated 
than Kant himself suggested. Noticing the differences and similarities that lead to 
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the genus of a pattern in our case or to the genus of a tree in Kant’s own exam-
ple, occur in social activities subsumed in cultural traditions conveying ideas 
about the same and the different and about how these differences may be re-
flected and abstracted. This is why some cultures make finer or different catego-
rizations of plants and colors than others. We certainly notice differences and 
similarities —not through neutral tactile, aural, visual and other sense impres-
sions— but through our historically and culturally species-evolved senses (Gib-
son, 1966; Wartofsky, 1979). So, instead of a contemplative and obvious act, to 
notice something —anything, trivial though it may be, like the circles in a pat-
tern— is already a complex cultural-cognitive process. 

Now, we do not remain confined to what we materially see —perception, it 
is true—, is always the perception of particulars. We go beyond the realm of par-
ticulars by noticing something else —something general, conceptual— and by 
trying to make sense of it. I referred to this process of concept-noticing and 
sense-making as a process of objectification. 

The whole idea of objectification is embedded in an ontology according to 
which the concepts or objects of knowledge are made up of layers of generality. 
The epistemological counterpart to this ontological premise asserts that our 
knowledge of a certain conceptual object is concurrent with the layers of general-
ity in which we can deal with the object. Because each one of these objects’ lay-
ers is general, they cannot be fully grasped in the realm of the particular. The di-
aphanous or insubstantial general can only come into being through signs. This is 
why to objectify something is to make it come into the world of (re)presentation, 
i.e. to appear within a semiotic process. 

In this line of thought, I have suggested distinguishing between the diverse 
strategies that the students use when they deal with the generalization of patterns. 
Patterning activity has been justly considered as one of the prominent routes for 
introducing students to algebra. However, not all patterning activity leads there. 
This is the case of inductive procedures based on rule formation by trial and error 
and other guessing strategies. These procedures do not lead to algebra because 
algebra is certainly neither about guessing nor about just using signs. It is rather 
about using signs to think in a distinctive way. As far as patterns are concerned, 
algebra is about generalizing. Now, as Kant’s example intimates, to talk about 
generalizing is to talk about two things: (a) that which is generalized (the object 
of generalization), and (b) the generalized object. Drawing on Kieran (1989), 
Love (1986) and Mason (1996), I have suggested that the process that goes from 
one to the other includes two interrelated components. The first one is noticing a 
commonality in some given particular terms. The second one is to form a general 
concept —a genus— by generalizing the noticed commonality to all the terms of 
the sequence. In order for a generalization of patterns to be called algebraic, I 
have suggested a third component: That the genus or generalized object crystal-
lize itself into a schema, i.e. a rule providing one with an expression of whatever 
term of the sequence (arithmetic generalizations would be those which fail to 
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meet the third component). Next, I have discussed three layers of algebraic gen-
erality and the corresponding modes of expression: factual, contextual and sym-
bolic. 

These layers of generality are characterized by the semiotic means of objecti-
fication to which the students resort in order to accomplish their generalizations. 
In factual generality, indeterminacy remains unnamed; generality rests on actions 
performed on numbers; actions are made up here of words, gestures and percep-
tual activity. In the contextual and symbolic layers of generality, the indetermi-
nate is made linguistically explicit: It is named. While in contextual generality 
the general objects are named through an embodied and situated description of 
them (e.g., “the next figure”, “the top row”, etc.), in symbolic generality the gen-
eral objects and the operations made with them are expressed in the alphanu-
meric semiotic system of algebra.  

Factual generality provides the raw material that, through successive semi-
otic contractions, the students will later transform into higher forms of algebraic 
generality. The issue here is not just to say the same thing in a different code. It 
is rather about gaining access to deeper forms of consciousness. It is in this re-
spect that the genetic link between layers of generality is most revealing. For in-
stance, we saw the tremendous cognitive importance of words, gestures and per-
ceptual activity in factual generality (as expressed in “1 plus 2”, etc.) and their 
important objectifying effects: They prepare the space where the designation of 
objects may occur later and where the students’ consciousness of indeterminacy 
may reach a deeper layer of objectification. 

In this context, an important question to ask is the following: Why did the 
students gesture? Why did they not limit themselves to talking? Gestures helped 
the students to refine their awareness of the general. These gestures stood for the 
rows that could not be seen. Gestures helped the students to visualize (Presmeg, 
2006) and hereby came to fill the gap left by impossible direct perception. Gen-
erally speaking, gestures do not merely carry out intentions or information; they 
are key elements of the process of knowledge objectification (Radford, 2005b)3. 

From an educational perspective, it is important to bear in mind that each one 
of the layers of generality presents its own challenges. As we saw in the class-
room examples discussed earlier, in factual and contextual generalizations, the 
students often talk about “the figure” instead of “the number of the figure”; be-
cause of the embodied and metonymic mode of designation of objects, the stu-
dents’ generalizations often carry some ambiguities. In symbolic generalizations, 
the students’ formulas often tend to simply narrate events and remain attached to 
the context. The understanding and proper use of algebraic symbolism entails the 
attainment of a disembodied cultural way of using signs and signifying through 

                                                
3 Currently, there is an intense interest in gestures in general, as well as in science and mathe-
matics education. Some recent work includes Arzarello and Edwards (2005), Goldin-Meadow 
(2003), Kendon (2004), Kita (2003), McNeill (2000), Robutti (2009), and Roth (2001). 
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them. The disembodiment of meaning of symbolic generalizations I am talking 
about should nevertheless not be understood as the decline or elimination of the 
individual, but as a new way of engaging with, and reflecting about, the general 
and the particular (see Radford, 2006, p. 60; see also Roth, 2006). This attain-
ment, I want to suggest, can only be possible through a transformation of the way 
in which letters signify in a formula. In addition to their indexical mode of signi-
fication, letters have to acquire a symbolic mode as well. In Peirce’s terminol-
ogy, letters have to become genuine symbols. The didactic situations that may 
promote the transformation of the index into symbol in the students’ formulas 
have still to be investigated further (see Barallobres, 2005). When we invited our 
students to simplify formulas, some progress in the direction from index to sym-
bol was observed, even with the youngest. Thus, several groups of Grade 8 stu-
dents went from 1+++ rrr  to 13+!r . However, examples such as these are 
not enough to provide us with a clear idea of the genetic path that goes from one 
mode of signification to the other. My conjecture at this point is that this path is 
paved with subtle qualitative changes where indexicality is progressively put in 
the background and the letters acquire a relational meaning (see Radford and 
Puig, 2007). 

Be this as it may, I hardly believe that the didactic situations susceptible to 
leading our students to deeper layers of symbolic or other forms of generality can 
be reduced to the choice of fortuitously good mathematical problems. Powerful 
though it may be, the plane subject-object is not, epistemologically speaking, 
strong enough. The plane of social interaction must be included. The students 
have to learn to see the objects of knowledge from others’ (teachers and students) 
perspectives. This is why, in the classroom, we often organized an exchange of 
ideas and solutions and the discussion of them between groups, followed by gen-
eral class discussions (Radford & Demers, 2004). The idea, however, is not 
merely to “share” solutions in order to catalyze the attainment of deeper layers of 
generality. It is rather that the objectification of knowledge presupposes the en-
counter with an object whose appearance in our consciousness is only possible 
through contrasts. Our awareness and understanding of an object of knowledge is 
only possible through the encounter with other individuals’ understanding of it 
(Bakhtin, 1990; Hegel, 1977; Vygotsky, 1962). In this encounter, our under-
standing becomes entangled with the understandings of others and the historical 
intelligence embodied in cultural artifacts (e.g., language, writing) that we use to 
make our experience of the world possible in the first place. 
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