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In this article, I introduce a typology of forms of algebraic thinking. In the first
part, I argue that the form and generality of algebraic thinking are characterised
by the mathematical problem at hand and the embodied and other semiotic
resources that are mobilised to tackle the problem in analytic ways. My claim is
based not only on semiotic considerations but also on new theories of cognition
that stress the fundamental role of the context, the body and the senses in the way
in which we come to know. In the second part, I present some concrete examples
from a longitudinal classroom research study through which the typology of
forms of algebraic thinking is illustrated.
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Introduction

To deal with algebraic thinking is not a simple matter. It supposes that you have

some sort of theory about thinking, or at least a clear idea of what you mean by

thinking in general. Before you continue reading, please pause for a moment and try

to answer this question: what do you take ‘thinking’ to mean?

As psychologists, philosophers, anthropologists and others are willing to

acknowledge, there is no simple and direct answer to this question. As odd as it

may seem, thinking is something that we do continuously. Thinking is as ubiquitous

as breathing. Yet, we still do not know how we think! Commenting on the elusiveness

of thinking, Dan Rappaport said: ‘‘The knowledge that thinking has conquered

for humanity is vast, yet our knowledge of thinking is scant. It might seem that

thinking eludes its own searching eye.’’ (Rappaport 1951; quoted in Benson 1994,

13). Western idealist and rationalist epistemologies have conveyed the idea that

thinking is something immaterial, something purely mental, bodiless. The influence

of Plato’s epistemology on our understanding of thinking is perhaps greater than we

usually appreciate (Radford, Edwards, and Arzarello 2009).

In this article, I introduce a typology of forms of algebraic thinking based on

their level of generality. The typology rests on a theoretical approach that capitalises

on the results of the 1990s algebra research agenda and current research in the field

(e.g., Coles and Brown 2001; Staats and Batteen 2009; Kieran 2006; Becker and
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Rivera 2008), and supplements it by incorporating a semiotic theoretical platform.

Signs lose the representational and ancillary status with which they are usually

endowed in classical cognitive theories in order to become the material counterpart

of thought. One of the key features of this approach is that its semiotic platform

opens up new possibilities for understanding algebraic signs and formulas in a

nonconventional manner. Traditionally, letters and signs for operations (like �, x,

etc.) have been considered the algebraic signs of school algebra. Alphanumeric
symbolism has indeed been regarded as the semiotic system of algebra par excellence.

Yet, from a semiotic perspective, signs can also be something very different. Words or

gestures, for instance, are signs on their own � semiotically speaking, they could be

algebraic signs, as genuine in this respect as letters. Of course, as I will argue later in

more detail, this does not mean that they are equivalent or that we can simply

substitute the ones for the others. What makes semiotic systems unique and

unsubstitutable is their mode of signifying. There are things that we can signify and

intend through certain signs, and things that we cannot. Try to put Pablo Neruda’s

famous poem ‘‘Canción Desesperada’’ (‘‘Desperate Song’’) in an algebraic formula,

and you will see how hopeless the task is.

In the first part of this article, I argue that the mathematical situation at hand

and the embodied and other semiotic resources that are mobilised to tackle it in

analytic ways characterise the form and generality of the algebraic thinking that is

thus elicited. My claim is based not only on semiotic considerations, but also on

new theories of cognition that stress the fundamental role of the context, the body

and the senses in the way in which we come to know. In the second part, I present

some concrete examples through which the typology of forms of algebraic thinking is
illustrated.

The 1990s algebra research agenda

During the discussions held in the 1980s and 1990s (see, e.g., Bednarz, Kieran, and

Lee 1996; Sutherland et al. 2001), it was impossible to agree upon a minimal set of

characteristics of algebraic thinking. There was, however, a more or less general

consensus concerning two aspects. Algebra deals with objects of an indeterminate

nature, such as unknowns, variables, and parameters. Furthermore, in algebra, such

objects are dealt with in an analytic manner. What this means is that, in algebra, you

calculate with indeterminate quantities (i.e. you add, subtract, divide, etc. unknowns

and parameters) as if you knew them, as if they were specific numbers (see, e.g.,

Kieran 1989, 1990; Filloy and Rojano 1984a, 1989; Cortes, Vergnaud, and Kavafian
1990; for some epistemological analysis, see Filloy and Rojano 1984b; Puig 2004;

Radford and Puig 2007; Serfati 1999).

Of course, one way or another, algebraic objects have to be designated. The

general tendency in the 1980s and early 1990s was to associate school algebra and

algebraic thinking with the use of letters1. Even if at the time the idea was not

universally shared (Linchevski 1995; Mason 1996; Balacheff 2001), it prevailed

nonetheless, and is still very strong in current research on the teaching and learning

of algebra2. Although I do believe that it is impossible to practise abstract algebra

(e.g., Galois Theory) without some sort of sophisticated notations, I do not think

that algebra and algebraic thinking can be reduced to the use of letters. As John

Mason pointed out some years ago, ‘‘the manipulation of symbols is only a small

2 L. Radford
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part of what algebra is really about’’ (1990, 5). Letters, indeed, have never been either

a necessary or a sufficient condition for thinking algebraically. For instance, in his

Elements, Euclid used letters without thinking algebraically. Conversely, Chinese and

Babylonian mathematicians thought algebraically without using letters (Radford

2006).

What I am suggesting here, then, is this: algebra is about dealing with
indeterminacy in analytic ways. But instead of conceding alphanumeric symbolism

the exclusive right to designate and express indeterminacy, I am claiming that it is

only one of the several semiotic forms equipped to accomplish it. This is true of the

practices of elementary algebra (some examples will be provided in subsequent

sections) and of advanced algebra as well � even if in the latter, alphanumeric

symbolism becomes more salient.

But before I go further, let me reassure you that my idea is not to challenge the

power of symbolic algebra. Rather, I am trying to convince you that it is worthwhile

to entertain the idea that there are many semiotic ways (other than, and along with,

the symbolic one) in which to express the algebraic idea of unknown, variable,

parameter, etc. I deem this point important for mathematics education for the

following reason. Ontogenetically speaking, there is room for a large conceptual

zone where students can start thinking algebraically, even if they are not yet resorting

(or at least not to a great extent) to alphanumeric signs. This zone, which we may

term the zone of emergence of algebraic thinking, has remained largely ignored, as a

result of our obsession with recognising the algebraic in the symbolic only.

Sensuous cognition

My claim about a diversity of semiotic forms for dealing with algebraic

indeterminacy rests on a perspective on thinking that is squarely at odds with the

mental conception of thinking that informed most of the 1990s research on

mathematics education. Within this mental conception of thinking, signs were

often considered ‘symptoms’ of mental activity � hence the distinction between

internal and external representations. Drawing on Vygotskian psychology, from the

semiotic-cultural perspective advocated here, the question of the relationship

between signs and thought is thematised in a different way. First, signs are

considered in a broad sense, as something encompassing written as well as oral

linguistic terms, mathematical symbols, gestures, etc. (Arzarello 2006; Ernest 2008;

Radford 2002a). Secondly, signs are not considered as mere indicators of mental
activity. In contrast, signs are considered as constitutive parts of thinking. In more

precise terms, within this semiotic-cultural perspective, thinking is considered a

sensuous and sign-mediated reflective activity embodied in the corporeality of actions,

gestures, and artifacts.

The adjective sensuous refers to a conception of thinking that is inextricably

related to the role that the human senses play in it. Thinking is a versatile and

sophisticated form of sensuous action, where the various senses collaborate in the

course of a multi-sensorial experience of the world (Radford 2009a). This multi-

sensory characteristic of cognition has been emphasised by philosophers like Arnold

Gehlen (1988) and Maurice Merleau-Ponty (1945), and at its heart is the idea of the

important role that the body plays in the way we come to conceptualise things. As

Gallese and Lakoff recently contended:

Research in Mathematics Education 3
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the sensory-motor system not only provides structure to conceptual content, but also
characterizes the semantic content of concepts in terms of the way that we function with
our bodies in the world (Gallese and Lakoff 2005, 455�6).

In tune with such views, some researchers in our field are paying attention to the

embodied nature of mathematical cognition. This is the case with Ferdinando

Arzarello and the Torino Team in Italy, Rafael Núñez and Laurie Edwards in

the USA, Michael Roth and the CHAT group in Canada, the Uniban research

team in Brazil, etc. To mention a brief example, the Uniban team is investigating

the role of gestures in blind children. Here gestures and tactility come to play a

crucial role in understanding mathematical concepts (see the research conducted

by Solange Ali Fernandes and Lulu Healy with blind children [Ali Fernandes

2008]).
Of course, tactility and other sensorial mediated processes are also important in

non-impaired children. Ricardo Nemirovsky has suggested that instead of being

mere mental processes, understanding and imagination of mathematical concepts are

literally embedded in perceptuo-motor action: the ‘‘understanding of a mathematical

concept spans diverse perceptuo-motor activities’’ (Nemirovsky 2003, 108), so that

in this regard, ‘‘understanding is . . . interwoven with motor action’’ (Nemirovsky

2003, 107).

However, thinking encompasses still much more than that. Thinking is an

activity that, although performed by an ‘I’ and the ‘I’s body’, is ubiquitously drawing

on culture’s kit of patterns of meaning-making as well as on historically-constituted

concepts of an ethical, political, scientific, and aesthetic nature. Thinking is bound to

the context and the culture in which it takes place. This is why it is more accurate to

say that thinking in general, and algebraic thinking in particular, is a cognitive

historical praxis mediated by the body, signs, and tools.

Learning as objectification

From an educational perspective, the main question is: how do the students acquire

fluency in such cognitive cultural-historical praxes? How do they become acquainted

with the historically-constituted forms of action, reflection and reasoning that those

praxes convey? Since mathematical forms of reasoning have been forged and refined

through centuries of cognitive activity, they are far from trivial for the students. It is

the historical density of such praxes, sedimented now in compact, systemic, and

highly abstract formulations, that is the basis of what Vygotsky intended with his

famous distinction between ‘quotidian’ and ‘scientific’ concepts � regardless of how

unfortunate Vygotsky’s choice of terms was.

Reflective acquaintance with cognitive historical praxes and their concomitant

forms of action and reasoning is what learning consists of. And, as I submitted

elsewhere (Radford 2008a), it can be theorised as processes of objectification, that is,

those social processes through which students grasp the cultural logic with which the

objects of knowledge have been endowed, and become conversant with the

historically-constituted forms of action and thinking.3

Working within this theoretical framework, where semiotics, culture and history

are driving principles, in recent years my collaborators and I have been busy

implementing classroom holistic activities that can offer students the opportunity to

4 L. Radford
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reflect algebraically and to get acquainted with some basic ideas of algebra in

different contexts � equations, pattern generalisation and, recently, graph interpreta-

tion (Radford 2000, 2002b, 2003, 2009a, 2009b; Radford, Bardini and Sabena 2007).

Our goal has been to try to understand what I previously referred to as the zone of

emergence of algebraic thinking and forms of algebraic thinking elicited by our

activities.

Let me pause this theoretical discussion here and turn now to some short

examples that come from our first longitudinal research project � a project that we

conducted from 1998 to 2003, and during which we accompanied four classes of

students as they went from Grade 8 to Grade 12, i.e., until the completion of high

school at age of 17�18. The examples will illustrate the typology of algebraic thinking

that is suggested in this article and, at the same time, give an idea of our approach4.

At the end of the article, comments on the meaning of the typology from a

developmental perspective will be provided.

Some classroom results

The students’ first contact with algebraic symbolism occurred when they were in

Grade 8. In Grade 9 we decided to start with an activity that was intended as a

means to revisit the concepts learned in the previous year. In the introductory part of

the activity, the students, working in groups of three, had to draw Figure 4 and

Figure 5 of the sequence shown in Figure I and find out the number of circles in

Figures 10 and 100.5 In the second part of the activity, the students were asked to

write a message to a student of another Grade 9 class indicating how to find out the

number of circles in any figure (‘‘figure quelconque’’, in the original French), and then

write an algebraic formula for the number of circles in Figure n.

Factual algebraic thinking

Usually, the students start counting the number of circles in Figures 1, 2, and 3, and

realise that, in sequences like the one shown in Figure I, the number of circles

increases by the same number each time. However, as the students quickly notice, this

recursive relationship between consecutive figures is not really a practical way to

answer the question about ‘big’ figures, like Figure 100.

In one of the groups (formed by Jimmy, Dan, and Frank), working on the sequence

shown in Figure I, the students imagined the figures as divided into two rows:

1. Dan: (referring to Figure 1) Well . . . (pointing to the top row) 2 on top; there,

there is 3 on the bottom . . .
2. Jimmy: [Figure] 2, there are 3; [Figure] 3, there are 4.

3. Dan: wait a minute. Ok (he makes a series of gestures as he speaks; see four of

the six gestures in Figure II ), Figure 1, 2 on top. Figure 2, 3 on top. Figure 3, 4.

Figure 4, 5.
4. Jimmy: Figure 10, it will be 11 . . .
5. Dan: . . . 11 on top, and 12 on the bottom.

6. Jimmy: Every time there will be one more in the air.

7. Frank: [Figure] 100? 101, 102 . . .
8. Dan: 203.

Research in Mathematics Education 5
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As the students’ dialogue suggests, the generalisation was accomplished in two steps.

In the first step (lines 1�3), the students conceived of the figures as divided into two

lines, and, drawing on perceptual observations made on the first three given figures,

they were able to objectify a regularity: a relationship between the number of the

figure and the number of circles in its rows.

The grasping of the regularity is not enough, however, to ensure the general-

isation. The regularity has to be generalised. And this is what the students

accomplished in the following turns where they came up with a formula to find

the number of circles in Figures 10 and 100. Indeed:

j in turns 4 and 5 the observed regularity of perceptually available figures was

generalised to Figure 10, a figure that is not in the students’ perceptual field;

j line 6 contains a partial linguistic formulation of the general structure of the

figures, as perceived by the students: ‘‘Every time there will be one more in the

air’’, i.e., for all figures of the sequence, there is always one unmatched circle

on the bottom row;

j in line 7, Frank resorted to the objectified pattern structure in order to

calculate the number of circles in Figure 100.

The students are equipped now with a formula to answer questions about Figure

1000, Figure 1 000 000, or whatever particular figure you may have in mind.

“ Figure1

“ Figure 2 3 on top”

2 on top”

Figure II. Dan makes a sequence of pointing gestures coordinated with words in a first

process of objectification (reconstruction from the video data).

Figure I. The sequence of the introductory pattern generalisation activity in Grade 9.

6 L. Radford
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Now, I am talking about a formula, yet there are no letters! That’s true. The

algebraic formula consists, rather, in a piece of embodied action. We can call

it � borrowing an expression from Vergnaud (1996) and changing it slightly � an

in-action-formula.

A ‘formula’ of this concrete form of algebraic thinking can better be understood

as an embodied ‘function’ or ‘predicate’ with a tacit variable: indeterminacy does

not reach the level of discourse. It is present through the appearance of some
of its instances (1, 2, 3, 4, 5, 10, 100). It remains an empty space to be filled up

by the eventual uttering of particular terms. We call this type of situated and

concrete form of algebraic thinking that operates at the level of particular number or

facts factual6.

Despite its apparently concrete nature, factual algebraic thinking is not a simple

form of mathematical reflection. On the contrary, as can be seen in Fig. II, it rests on

highly evolved mechanisms of perception and a sophisticated rhythmic coordination

of gestures, words, and symbols. The grasping of the regularity and the imagining of

the figures in the course of the generalisation results from, and remains anchored in,

a profound sensuous mediated process� showing thereby the multi-modal nature of

factual algebraic thinking7.

Let us turn now to the second part of the Grade 9 activity.

Contextual algebraic thinking

In the introduction I suggested that the mathematical task at hand and the social

sign-mediated processes of perception and generalisation can inform us of the form

and generality of the algebraic thinking that is thus elicited. What kind of algebraic

thinking will now be generated? The task requires that the students go beyond

particular figures and deal with a new object: a general figure. Indeterminacy must

now become part of explicit discourse. Our question is: How will the students build

the formula? In the absence of gestures and rhythm, to which linguistic mechanisms

will the students resort?

In fact, in being asked to write a message, the students were invited to enter into a

deeper level of objectification than the one of action and perception characteristic of

factual algebraic thinking. Writing makes one render explicit things that may have

remained on what neuropsychologists call the area of proto-attention, or what

Husserl used to call the horizon of intentions (Husserl 1954).

In Grade 8, writing a message that involves this new object ‘general figure’

proved to be very difficult. As we reported in previous work (see, e.g., Radford 2000),
the students often used particular figures (like Figure 12) as examples to convey a

generic idea, or used particular figures in a metaphorical sense to talk about the still

unutterable generality (Radford 2002a). Sometimes the message was not complete.

Here is an example: ‘‘You add 1 [circle] on the top and 1 on the bottom.’’

In Grade 9, the students felt much more comfortable with this level of generality.

The following message is paradigmatic of what the students wrote: ‘‘You have to add

one more circle than the number of the figure in the top row, and add one more circle

than the top row to the one on the bottom.’’

Of course, this procedural sentence can be seen as a formula. But it is very

different from the one discussed in the previous section. Here, rhythm and gestures

have been replaced by key descriptive terms � ‘top,’ ‘bottom.’ These terms are what

Research in Mathematics Education 7

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
0
:
1
0
 
1
2
 
M
a
y
 
2
0
1
0



linguists call spatial deictics, that is to say, words with which we describe, in a

contextual way, objects in space. The indeterminate object variable is now explicitly

mentioned through the term ‘number of the figure.’ However, although different

from factual algebraic thinking, both in terms of the way indeterminacy is

handled and the semiotic means by which the students think, the new form of

algebraic thinking is still contextual and ‘perspectival’ in that it is based on a

particular way of regarding something8. The algebraic formula is indeed a description

of the general term, as it was to be drawn or imagined. This is why we term this

form of algebraic thinking contextual. Here is another Grade 9 example: ‘‘# of

the figure�1 for the top row and the # of the figure�2 for the bottom. Add the two

for the total.’’

Let us turn now to the last part of the Grade 9 activity.

Standard algebraic thinking

Expressing the formula in algebraic standard symbolism was much more difficult

than expressing it in words, both in Grades 8 and 9, although, of course, there

was some progress from one year to the next. The results mentioned in the previous

section shed some light on the nature of these difficulties: previously, the students

could resort to a range of semiotic resources, like pointing and iconic gestures,

deictics, adverbs, etc. Those rich semiotic resources do not have a place in the

alphanumeric-based algebraic formulas. In short, there is a drastic change in the

mode of designation of the objects of discourse.

How, then, to designate the number of circles in a figure, in the highly-condensed

semiotic system of alphanumeric signs? From an ontogenetic viewpoint, direct

‘translation’ is not something on which we can count, as we cannot count on direct

translation from our native language to a new one we are just starting to learn.

Direct translation presupposes that you already know the target language. In the

case of the standard alphanumeric algebraic language, the situation is even worse, as

this language is not even ‘natural.’ Our standard algebraic language is artificial.

Historical analysis shows that its construction was preceded by a good deal of efforts

that ended up in dead ends and failures (Høyrup 2008; Serfati 2006).

In Grade 8, the students often resorted to particular examples. Thus, dealing with

the sequence shown in Figure III, Dan and his group (in Grade 8, the group

was formed by Dan, Frank and Sara), illustrated the formula through the case of

Figure 100:

1. Dan: You add 3 on top, and 1 at the bottom.

2. Sara: That’s true if you go by the [form of the] figure.

3. Dan: You add 3 on top, and 1 at the bottom. Let’s say that n equals 100. It

would be 100 . . . you add 1, it would be 101 [on the bottom row] . . .
4. Frank: (Interrupting) and 103 [on the top row].

Figure III. One of the sequences the students investigated in Grade 8.

8 L. Radford
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In other cases, the students often resorted to formulas that, superficially, look to be

algebraic, in particular because they contain letters. Thus, in the sequence shown in

Figure III, several students in Grade 8 produced the formula n�2�4. However,

despite its appearance, the formula is not algebraic. It was instead obtained by trial

and error. Dan and his group first tried n�2�1, then n�2�2, etc. until they

obtained n�2�4, which seemed to work in the few cases in which they tested it.

This procedure is not based on an analytic way of thinking about indeterminate

quantities � the chief characteristic of algebraic thinking. This procedure does not

even reach the sophistication of pre-algebraic arithmetic methods such as ‘false

position.’ It is rather a kind of arithmetic naı̈ve induction9.

To counter these inductive arithmetic procedures, in designing the classroom

activity, we added a question in which the students were asked to provide a formula

for calculating the number of circles on the top row of Figure n. They were then

asked to find a formula for the total number of circles in Figure n. Establishing a

functional relationship between the number of the figure and the number of circles

on top of the figure proved very difficult. Dan and his group suggested using

two letters:

Dan: (Noticing that each figure has two more circles than the previous one) It’s plus 2 [to
obtain the number of circles in the next figure], plus 2 [to obtain the number of
circles in the next figure], plus 2 . . . Unless we put 2 letters . . . What we would do
is . . . the top row would be n, and the bottom row would be like b. After that, you
do n�b�2.

In this case, the letters n and b do not designate the number of circles in the top

and bottom rows of Figure n. Actually, the number of the figure is not even taken

into account. The formula, rather, expresses a vague recursive relationship.

Another Grade 8 group suggested the ‘cascading formula’ shown in Figure IV.

The first line corresponds to the number of circles on the bottom row. The

result is called ‘w’. This is expressed in the second line, where it is also said that

you still have to add 2 to get the number of circles on the top row. This last

number is called ‘x’, as indicated in the third line of the formula. Finally, in the

last line, the students are saying that you still have to add the numbers represented

by ‘w’ and ‘x’ to obtain the total of circles in Figure n. Not bad, although still a

bit far away from the standard way to write formulas within the alphanumeric

semiotic system of algebra. Not bad, even if the use of several letters and their

inter-connected meanings is not fully clear for the students. As one of the students

from this group said to the other two members, ‘‘You mix me up with all

your letters!’’
The first example (Dan’s) is interesting in that it shows that, although these

students were able to produce an inductive formula that looked like an algebraic

one (i.e., ‘n�2�4’), they did not produce the expected algebraic formula ‘n�3’ for

the top row of Figure n � even if the formula ‘n�2�4’ seems much more complex.

Figure IV. A Grade 8 student’s formula using two letters.
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The complexity of the formulas cannot be judged by the number of involved terms

only; the complexity of the formula should also be judged in terms of the mode of

designation of the objects of discourse.

The second example is interesting in that it unveils some of the tremendous

difficulties that the students have to face when using letters to intend to say what they

perfectly know how to express in natural language. This problem is much more

complex than a simple translation. As Glaeser remarked, ‘‘the urge to give an

immediate meaning to every intermediate result has to be resisted’’ (1999, 154).

Meaning, indeed, has to be put in abeyance.

In Grade 9 we still found some formulas that resembled those produced in Grade

8. But more typical of Grade 9 were the formulas shown in Figure V (these formulas

correspond to the sequence shown in Figure I).

These formulas bear a closer resemblance to those of the standard symbolic

algebra. Yet, the signs still keep the embodied and perspectival experience of the

objectification process observed in Grade 8. We easily recognise in the term ‘n�1’

the reference to the top row, as we recognise in the term ‘n�2’ the reference to the

bottom row. In Dan’s group, for instance, this embodied manner of symbolising was

made very clear:

1. Dan: No, no, well, it’s that . . . n�1 is the top row . . .
2. Frank: (Interrupting) Yes, I know.

3. Dan: n�2 is the bottom row.

As is clear from Figure V, the students add brackets to distinguish carefully between

the rows. This is why, I want to suggest, the formula is an icon, a kind of geometric

description of the figure. In other terms, the formula is not an abstract symbolic

calculating artefact but rather a story that narrates, in a highly condensed manner,

the students’ mathematical experience. In other words, the formula is a narrative.

And it is the narrative dimension of the students’ iconic formulas that very often

makes it possible to infer from the formula the sequence to which it corresponds (see

Figure VI).

That which previously was distinguished through pointing gestures and linguistic

deictics is now distinguished through the effect of signs and brackets. It is precisely

this ‘perspectival’ nature of the formula that leads many students to argue that

brackets cannot be removed. Otherwise, they argue, it would be impossible to know

what the terms of the formula mean. Yet, this is precisely what constitutes the force

of algebra � the detachment from the context in order to signify things in an abstract

way. The mode of designation has to move to a different layer where signs borrow

their meaning not from the things they denote but from the relational way they mean

within the context of other signs.

The narrative meaning of iconic symbolic formulas became even clearer when a

fifth class was added to our project. As our project progressed, other teachers

became interested in it and, to the extent that we could, we included new classes. The

Figure V. Left, the formula produced by Dan’s group in Grade 9. Right, a variant of it

produced by another Grade 9 group.
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fifth class regrouped Grade 8 students who were recognised as having difficulties

in following the rhythm of ‘regular’ math classes. Dealing with the pattern shown in

Figure VII (left) one group of students produced the formula shown in Figure VII

(right).

The formula does not have the usual linear organisation of standard algebraic

formulas. Rather, signs signify in a spatial manner: as the students explained to us,

the top ‘R’ means that there are as many toothpicks on the top of the figure

as the number of the figure. The ‘R’ placed on the bottom of the formula means that

there are as many toothpicks on the bottom of the figure as the number of the

figure. The lateral ‘R’ means that there are as many vertical toothpicks on the top of

the figure as the number of the figure, but not really. There is an extra toothpick to be

accounted for, placed at the right end, signified by the lateral sign ‘1.’ The ‘�’ signs

mean that you have to add all of those things.

From iconic formulas to symbolic ones

One of the important didactic problems is to implement classroom activities that

will allow the students to endow their formulas with new abstract meanings. In

more precise terms, the problem is to transform the iconic meaning of formulas

into something that no longer designates concrete objects. For instance, the formula

(n�1)�(n�2) mentioned previously (Figure V), has to be seen in a new light. The

narrative dimension of formulas has to collapse (Radford 2002c). The embodied

meaning of the formulas does not disappear. It rather gives rise to a more abstract

Figure VI. Formulas as narratives. Instead of decontextualised calculations, the formulas

narrate the manner in which calculations have to be carried out in close relationship to the

geometry of the figures and position of their parts.

Figure VII. Left, a toothpick sequence. Right, an algebraic symbolic formula that includes

its diagrammatic ‘user guide’ or mode d’emploi.

Research in Mathematics Education 11

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
0
:
1
0
 
1
2
 
M
a
y
 
2
0
1
0



one. Thus, in addition to signifying the sum of circles in the top and bottom rows,

the terms of the formula have to be considered in relation to the signs that they

contain. Resemblances and differences � these key aspects of signification in general

(Radford 2008b) � must no longer be exclusively based on spatial and contextual

considerations (such as ‘top’ and ‘bottom’). In the new form of signifying, there is a

shift in focus: attention has to be directed now to morphological differences,

i.e., differences in terms of letters versus numbers. In short, meaning must

become relational.

The search for the pedagogical actions allowing the students to objectify this

abstract form of signifying became one of our goals, both from a theoretical and a

practical viewpoint. Our strategy was based on comparing and simplifying formulas.

Here is an example that deals with the sequence of squares shown in Figure VII.

The previous day, the students produced several formulas. At the beginning of

the class, the teacher asked for some examples. The students mentioned two, that

were written as r �3�1 and (r�1)�r �2, where r stands for the rank or number of

the figure.

1. Teacher: I would like to compare these formulas and to see where they come

from. Brian, do you want to explain the first formula to us?

2. Brian: (Going to the blackboard). Ok, yesterday we saw that the first figure

only has 1 toothpick at the bottom (he points to the bottom of Figure 1 on the

blackboard) and the second figure, there were 2, third figure, there were 3. So,

we added the bottom and the top, and then we saw that, in the first term, there

were 2 [vertical toothpicks] (points to the vertical toothpicks of Figure 1) and

Figure 2 has 3 (points to the vertical toothpicks of Figure 2) therefore, it’s

always [the rank or number of the figure] plus 1. So we did the bottom plus the

top plus the rank plus 1. And then we saw that . . . Well, we discussed a lot,

and we saw that . . . it was the rank, rank times 3 (points towards the first term

of the formula) because it has the bottom, the top and the vertical. There was,

there was, plus [one] . . .
3. Teacher: So you say that this (pointing to the bottom row of the first square and

colouring it with blue chalk; see Figure VIII, pic. 1) is one r; this is another r

(pointing to the top row of the first square and colouring it with blue chalk; see

pic. 2); and this is the third r (pointing to the left vertical side of the first square

and colouring it with blue chalk; see pic. 3) and there remains another one

[toothpick] (pointing to the second vertical line of the first square; pic. 4). So,

(pointing to the formula) r times 3 . . . I have three r here (pointing successively

to the coloured sides of the first square) plus another one in each term (pointing

the uncoloured right vertical side of the first square). (Then, the teacher repeated

the same set of sequence of pointing gestures on Figure 2, see Figure VIII, pics.

5�8). This is the explanation of the formula. Now, Ron, would you please

explain the second formula?

Ron went to the blackboard and explained the various elements of (r�1)�r �2. After

that, the teacher encouraged a discussion about the formulas. Sandra � a student

sitting at the end of the classroom � argued that both equations work, but the first

one was simpler. The teacher summarised the difference as follows:

12 L. Radford
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Figure VIII. Pictures 1�4 (top) show the teacher’s effort to relate the terms of the formula r �3�1 to the various parts of Figure 1. Pictures 5�8

(bottom) show the same effort but this time the focus is on Figure 2. The teacher makes apparent for the students the new way of signifying through a

subtle coordination of gestures, words, drawings and coloured segments.
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1. Teacher: the difference is that here (pointing to the formula r �3�1) we put

together the terms that were the same and we simplified. Since I am

calculating the total number of toothpicks, I can put all together (while

talking, she emphasised the words ‘same’, ‘simplified’ and ‘total’). It is exactly
this that the first formula does. (Smiling to the class, she says) I think that you

are ready for the next activity.

The previous formula r �3�1 looks much like Dan’s formula n�2�4 discussed

earlier. Yet, the difference is considerable. Brian’s formula was not produced by trial

and error. It was the result of an algebraic generalising process where general

functional relationships were first identified (e.g., the number of toothpicks on top

vis-à-vis the rank or number of the figure), then simplified. As Brian put it, ‘‘ . . . it

was the rank, rank times 3 because it has the bottom, the top and the vertical.’’ The

teacher capitalised on Brian’s idea and, through a feast of clear and consecutive

gestures that echoed Brian’s timid gestures, coloured parts of the first two figures to

make clear for all the students the relationship between the spatial-geometric parts of

the terms and their corresponding rank (Figure VIII, pic. 1�8). After showing each

one of the three r in Figure 1, she linked the first part of the formula (r �3) to the

three parts she had just coloured. She said: ‘‘r times 3 . . . I have three r here,’’

followed by the crucial remark that there is still ‘‘another one in each term’’ (which

corresponds to the constant term of the formula). Her coordinated gestures and

words related very well the spatial elements of the figures with the corresponding

parts of the formula. The idea of putting together the toothpicks on the bottom, the

top and the vertical ones, led to adding the number of the figure several times.10

That day, after the general discussion, the students dealt with a sequence of

houses (Figure IX). The students identified the relationship between clue elements of

the figures and their rank or number:

1. Raymond: the number of toothpicks in the roof is twice the number of the

figure. For the walls [which included the floor], it is twice, and another wall . . .
2. Joyce: (interrupting) to close the space . . .
3. Raymond: So, the formula is rank times 4 plus 1.

In so doing, the students entered into a new form of algebraic understanding and

moved into a deep region of the zone of emergence of algebraic thinking. They

moved from a referential understanding of signs (signs as referring to particular

objects, like the number of toothpicks in the roof) to a morphological one *the

beginning perhaps of what Kieran (1990) Kirshner (2001), Hoch and Dreyfus (2006)

and others have called the structural dimension of algebra.

It is clear that the symbolic formula is no longer just iconic. Iconicity is still

present, but it has receded to make room for a more concise and abstract form of

signification. Naturally, the students have yet to undergo a supplementary lengthy

process of objectification to become fluent with the modern form of symbolic

algebraic thinking, where symbolic calculations are carried out through formal

Figure IX. Left, a toothpick sequence of houses. Right, one of the students’ formulas

14 L. Radford
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considerations only. For this to occur, new objects like x2 and x2�x will have to enter

the universe of discourse and acquire a detached existence. It is not vain to recall

here that this process was not easily achieved in the history of algebra. Thus, to

distinguish magnitudes, Vieta � one of the founders of our modern algebraic

symbolism � was still, in the 16th century talking about ‘length’, ‘plane’, ‘solid’, etc.

Our modern way of referring to the now abstract monomials of algebra still reminds

us of their embedded concrete beginnings. Indeed, monomials such as x2 or x3 read
as ‘x squared’, ‘x cubed’. Our modern language hangs behind the relics of its past,

revealing thereby the monomials’ original geometric-spatial origin.

Synthesis and concluding remarks

In this article, drawing on recent conceptions of thinking offered by anthropology,

semiotics and neurosciences, I suggested that thinking is a complex form of reflection

mediated by the senses, the body, signs and artifacts. I argued that the mathematical

situation and the semiotic resources that are mobilised to tackle it in analytic ways

characterise the form and generality of the algebraic thinking that is thus elicited.

Focusing on the context of pattern generalisation, I suggested a typology of forms

of algebraic thinking � factual, contextual, and symbolic. However, the typology

should not be understood in terms of developmental stages in a ‘naturalistic’

sense. Classrooms are much more than the neutral spaces portrayed by Piagetian-
inspired educational theory, alleged spaces to which the students idiosyncratically

adapt. Developmentally speaking, the questions that we ask the students (like the

patterning questions discussed in this article) are far from innocent. They are loaded

with cultural and scientific values. They insinuate lines of cognitive development.

Our pattern activities did not merely provide a kind of grooming context for thought

to appear and evolve; they certainly had a definite influence in the students’

emerging algebraic thinking11. The typology is not meant to be understood in a rigid

hierarchical manner either. Thus, depending on the context and the problem at hand,

a student can move back and forth along those forms of thinking. The typology is

rather an attempt at understanding the processes that the students undergo in their

contact with the forms of action, reflection and reasoning conveyed by the

historically constituted praxis of school algebra.12

The classroom data presented here offers a glimpse of the ontogenetic journey of

our students on their route to algebraic thinking. It stresses some of the challenges

that they had to overcome when passing from factual to contextual to symbolic

thinking. It stresses in particular the changes to be accomplished in modes of
signification. While in factual thinking, indeterminacy remains implicit and gestures,

words, and rhythm constitute the semiotic substance of the students’ in-action-

formulas, in contextual algebraic thinking indeterminacy becomes an explicit object

of discourse. Gestures and rhythm are replaced by linguistic deictics, adverbs, etc.

Formulas are expressed in a perceptual and ‘perspectival’ manner based on key terms

like ‘top’, ‘bottom’, etc. Formulas, in short, are based on a particular way of seeing

the sequence at hand.

Our discussion about symbolic algebraic thinking sheds some light on the

meaning with which the students endow their first alphanumeric formulas. Instead of

being an abstract calculating device, formulas often appear as vivid narratives. They

are icons in that they offer a kind of spatial description of the figure and the actions

Research in Mathematics Education 15
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to be carried out. What I called the ‘collapse of narratives’ appears as an important

step towards more encompassing ways of algebraic signification. The constitution of

meaning after such a collapse deserves more research (see also Barallobres 2007).

While Russell (1976) considered the formal manipulations of signs as empty
descriptions of reality, Husserl stressed the fact that such a manipulation of signs

requires a shift of intention: the focus becomes the signs themselves, but not as signs

per se. And he insisted that the abstract manipulation of signs is supported by new

meanings arising from rules resembling the rules of a game (Husserl 1970), which led

him to talk about signs having a game signification.

The classroom example discussed in the last section shows how the teacher,

through a complex coordination of gestures, alphanumeric formulas, and words,

capitalised on the formula of one of the groups to make apparent for the whole class
the idea of simplification of formulas. It was a first step, and certainly an important

one in the students’ ontogenetic journey.

Although I limited my account to the first two years of the 5-year journey, I hope

that such an account is enough to give an idea of the students’ struggles and

progresses towards increasingly more encompassing forms of algebraic thinking.
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Notes

1. This point was well made by Nemirovsky in an interesting article published in 1994.
Nemirovsky complained about the emphasis put on symbolic systems and the students’
understanding of symbolic systems’ rules: ‘‘Countless studies,’’ he said, referring to
previous research, ‘‘describe how students’ mistakes related to specific ‘alternative’ rules.’’
(1994, 391).

2. See e.g. the emphasis on notations in contemporary research on early algebra.
3. My use of the term objectification differs hence from other current uses where

objectification is conceived of as referring to something external and objective (regardless
of the culture) or as a process transformed into object. The former has been developed in
epistemological research informed by Realism; the latter by the linguistic tradition. My
use of objectification comes from Hegel, Vygotsky, and Husserl’s phenomenological work.

4. The examples have been chosen because they are representative of the ideas discussed in
the article. They are also strongly representative of what happened in the classroom �
without meaning that they are representations of a kind of ‘‘average’’ of the students’
behaviour in the sense of quantitative studies.

5. To avoid confusions, figures in the article will be numbered using Roman numerals to
distinguish them from numbers that refer to figures in the sequences investigated by the
students.

6. The adjective factual stresses the idea that this generalisation occurs within an elementary
layer of generality � one in which the universe of discourse does not go beyond particular
figures, like Figure 1000, Figure 3245, and so on.

7. In our current research with Grade 2 students these mechanisms of rhythmic coordination
are also present, but they do not reach the subtle sensorial synchrony that we observe in
older students, as reported here.
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8. It still supposes a spatially situated relationship between the individual and the object of
knowledge that gives sense to expressions like ‘top’ and ‘bottom’.

9. As epistemological analyses show, algebra has never been about guessing. Algebra since
Babylonian and Greek times has always been about direct procedures to answer questions
and solve problems characterised by the analytic manner in which indeterminate quantities
(e.g., unknowns, variables, parameters; see Radford 2001) are dealt with. The advent of
algebraic symbolism in the Renaissance and a concomitant interest in the devising of
general methods to solve problems resulted in a focus on structures, although the
‘structural turn’ was not specific to algebra. In the case that we are discussing here,
the meaning of the formula n�2�4 does not include this analytic structural dimension.
The formula was obtained by simple guessing. It includes indeterminate quantities
(symbolised by ‘n’), but lacks the analytic component. Its justification results from a
numerical match between a guessed formula and a few observed cases, a match that is
hoped to hold for all numbers. It is a form of naı̈ve arithmetic generalisation. Bills and
Rowland (1999) make a similar point in their interesting distinction between structural
versus empirical generalisations without being concerned, however, by the question of
analyticity. It might be the case that a generalisation can be structural without being
algebraic, as there are also arithmetic and geometric structures (e.g., arithmetic false
position methods exhibit a sort of structural component, without including the analytical
component proper to algebraic thinking). I do not have the space here to go into further
details, nor do I have space to say more about the delicate distinction between algebraic
and arithmetic formulas. For a further discussion of the latter point, see (Radford 2006).

10. Rhythmic gestures, in this passage, were very important. As in factual algebraic thinking,
they allowed the teacher to link various visual, linguistic, and symbolic elements together.
However, rhythm here is not as prominent as it usually is in factual algebraic thinking. The
cognitive difference in rhythmicity in both types of algebraic thinking is a matter of further
investigation. At this point, I cannot say more. I am indebted to one of the reviewers for
bringing this interesting point to discussion.

11. It might not be useless to remind here that these were the reasons that led Vygotsky (1981)
to argue that education is the artificial development of the individuals.

12. Our current research on equations suggests that the typology presented here applies also
to other domains of algebra (Radford, Demers and Miranda 2009).
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