2.8 Epistemology as a Research Category in Mathematics Teaching and Learning

Luis Radford

2.8.1 Introduction

In a seminal text, Artigue (1990) discusses the function of epistemological analysis in teaching. In 1995 she returns to this issue in her plenary conference delivered at the annual meeting of the Canadian Mathematics Education Study Group/Groupe canadien d’études en didactique des mathématiques. In my presentation, I draw on Artigue’s ideas and inquire about the role of epistemology in mathematics teaching and learning. In particular, I ask the question about whether epistemology might be an element in understanding differences and similarities between current mathematics education theories.

As we know very well, mathematics came to occupy a predominant place in the new curriculums of the early 20th century in Europe. It is, indeed, at this moment that, in industrialised countries, the scientific training of the new generation became a social need. As Carlo Bourlet—a professor at the Conservatoire National des Arts et Métiers— noted in a conference published in 1910 in the journal *L’Enseignement Mathématique*:

Notre rôle [celui des enseignants] est terriblement lourd, il est capital, puisqu’il s’agit de rendre possible et d’accélérer le progrès de l’Humanité toute entière. Ainsi conçu, de ce point de vue général, notre devoir nous apparaît sous un nouvel aspect. Il ne s’agit plus de l’individu, mais de la société.3 (Bourlet 1910, p. 374)

However, if the general intention was to provide a human infrastructure with the ability to ensure the path towards progress (for it is in technological terms that the 20th century conceived of progress and development), it remains that, in practice,

---

3Our role [i.e., the teachers’ role] is extremely serious, it is fundamental, because it is a matter of making possible and accelerating the progress of the whole of Humanity. Thus conceived of, from this general viewpoint, we see our duty in a new light. It is no longer a matter of the individual, but of society.
each country had to design and implement its curriculum in accordance with specific circumstances. Curriculum differences and implementation resulted, indeed, from internal tensions over political and economic issues, as well as national intellectual traditions and the way in which the school was gradually subjected to the needs of national capitalist production. These differences resulted also from different concepts of education. To give but one example, in North America, over the 20th century, the curriculum has evolved as it is pulled on one hand by a "progressive" idea of education—i.e., an education centered on the student and the discovery method—and, on the other, by ideas which organise the teaching of mathematics around mathematical content and the knowledge to be learned by the student. While proponents of the second paradigm criticise the first for the insufficiency of their discovery methods used to develop students' basic skills in arithmetic and algebra, proponents of the first paradigm insist that, to foster real learning, children should be given the opportunity to create their own calculation strategies without instruction (Klein 2003). We see from this short example that the differences that underlie the establishment of a curriculum are far from circumstantial. They are, from the beginning, cultural. Here, they relate to how we understand the subject-object relation (the subject that learns, that is to say the student; and the object to learn, here the mathematical content) as mediated by the political, economical, and educational context. And it is within a "set of differences" in each country that the increasingly systematic reflection on the teaching and learning of mathematics resulted, in the second half of the 20th century, in the establishment of a disciplinary research field now called "mathematics education", "didactique des mathématiques", "matemática educativa", "didattica della matematica", etc.

As a result of its cultural determinations (which, of course, cannot be seen through deterministic lenses: they are determinations in a more holistic, dialectical, unpredictable sense), this disciplinary field of research cannot present itself as something homogeneous. It would be a mistake to think that the different names through which we call a discipline merely reflect a matter of language, a translation that would move smoothly from one language to another. Behind these names hide important differences, possibly irreducible, in the conception of the discipline, in the way it is practiced, in its principles, in its methods. They are, indeed, as the title of this panel indicates, research traditions.

The work of Michèle Artigue explores several dimensions of the problem posed by the teaching and learning of mathematics. In this context, I explore two of these dimensions.

The first dimension consists in going beyond the simple recognition of differences between the research traditions in mathematics teaching and learning. Artigue has played, and continues to play, a fundamental role in creating bridges between the traditions found in our discipline. She is a pioneer in the field of research that we now call connecting theories in mathematics education (e.g., Prediger et al. 2008). Artigue's role in this field is so remarkable that there was, at the Artigue conference, a panel devoted to this field.
A second dimension that Artigue explores in her work is that of epistemology in teaching and more generally in education. She has also made a remarkable contribution to the point that there was also a panel on this topic at the conference. In what follows, I would like to briefly focus on the first dimension in light of the second. In other words, I would like to reflect on epistemology as a research category that provides insight in understanding differences and similarities in our research traditions.

2.8.2 Epistemology and Teaching

The recourse to epistemology is a central feature of the main theoretical frameworks of the French school of didactique des mathématiques (e.g., Brousseau 1983; Glaeser 1981). The recourse to epistemology, however, is not specific to mathematics. There is, I would say, in French culture in general, a deep interest in history. An inquiry into knowledge cannot be carried out without also raising questions about its genesis and development. In this context, one could hardly reflect on mathematical knowledge without taking into account its historical dimension. I can say that it is this passion for history that surprised me in the first place when I arrived in France in the early 1980s. In Guatemala, my native country, and perhaps in the other Latin American countries, as a result of the manner in which colonisation was conducted from the 16th century to the 19th century, history has a deeply ambiguous and disrupting meaning: it means a devastating rupture from which we will never recover and that continues to haunt the problem of the constitution of a cultural identity. In France, however, history is precisely that which gives continuity to being and knowledge—a continuity that defines what Castoriadis (1975) calls a collective imaginary. From this collective imaginary emanates, among other things, a sense of cultural belonging that not even the French revolution disrupted in France. Immediately after the French revolution, men and women certainly felt and lived differently from the pre-revolutionary period; however they continued to recognise themselves as French. With the disruption of aboriginal life in the 15th century (15th century as reckoned in accordance with the European chronology, of course, not to the aboriginal one), the aboriginal communities of the “New World” were subjected to new political, economical, and spiritual regimes that changed radically the way people recognised themselves. One may hence understand why the passion for history that I found in France was something new for me, as was also the idea of investigating knowledge through its own historical development.

The function of epistemology, however, is not as transparent and simple as it may first appear. And this function is even less transparent in the context of education. The use of epistemology in the context of education cannot be achieved without a theoretical reflection on the way in which epistemology can help educators in their research. It is precisely this reflection that Michèle Artigue undertakes in her 1990 paper in RDM and to which she returns in her plenary lecture delivered at the annual meeting of the Canadian Mathematics Education Study
Group/Groupe canadien d’études en didactique des mathématiques (Artigue 1995). Indeed, in these papers she discusses the function of epistemological analysis in teaching and identifies three aspects.

Firstly, epistemology allows one to reflect on the manner in which objects of knowledge appear in the school practice. Artigue speaks of a form of “vigilance” which means a distancing and a critical attitude towards the temptation to consider objects of knowledge in a naive, a naive non-historical way.

A second function, even more important than the first one, according to Artigue, consists of offering a means through which to understand the formation of knowledge. There is, of course, an important difference when we confront the historical production of knowledge and its social reproduction. In the case of educational institutions (e.g., schools, universities), the reproduction of knowledge is achieved within some constraints that we cannot find in the historical production of knowledge.

Les contraintes qui gouvernent ces généalogies [éducatives] ne sont pas identiques de celles qui ont gouverné la généalogie historique, mais cette dernière reste néanmoins, pour le didacticien, un point d’ancrage de l’analyse didactique, sorte de promontoire d’observation, quand il s’agit d’analyser un processus d’enseignement donné, ou base de travail, s’il s’agit d’élaborer une telle généalogie.¹ (Artigue 1990, p. 246).

The third function, which is not entirely independent of the first, and which is the one that gives it the most visibility to epistemology in teaching, is the one found under the idea of epistemological obstacle. Artigue wrote in 1990 that it is this notion that would come to an educator’s mind if we unexpectedly asked the question of the relevance of epistemology to teaching.

Finally, the historical-epistemological analysis has undoubtedly refined itself in the last twenty years, both in its methods and in its educational applications (see, for example, Fauvel and van Maanen 2000; Barbin et al. 2008). We understand better the theoretical assumptions behind the notion of epistemological obstacle, its possibilities and its limitations.

My intention is not to enter into a detailed discussion of the notion of epistemological obstacle that educators borrow from Bachelard (1986) and that other traditions of research have integrated or adapted according to their needs (D’Amore 2004). I will limit myself to mentioning that this concept relies on a genetic conception of knowledge, that is to say a conception that explains knowledge as an entity whose nature is subject to change. Now, knowledge does not change randomly. Within the genetic conception that informs the notion of epistemological obstacle, knowledge obeys its own mechanisms. That is why, for Bachelard, the obstacle resides in the very act of knowing, it appears as a sort of “functional necessity”. It is this need that Brousseau (1983, p. 178) puts forward when he says

¹The constraints that govern these [educational] genealogies are not identical to those that governed the historical genesis, but the latter remains nonetheless, for the didactician, an anchoring point, a kind of observational promontory when the question is to analyze a certain process of teaching, or a working base if the question is to elaborate such a genesis.
that the epistemological obstacles “sont ceux auxquels on ne peut, ni ne doit échapper, du fait même de leur rôle constitutif dans la connaissance visée”.

This conception of knowledge as a genetic entity delimits the sense it takes in the different conceptual frameworks of the French school of didactique des mathématiques. More or less under the influence of Piaget, knowledge appears as an entity governed by adaptive mechanisms that subjects display in their inquisitive endeavours. These mechanisms are considered to be responsible for the production of operational invariants: this is the case in the theory of conceptual fields (Vergnaud 1990). As a result, this theory looks at these invariants from the learner’s perspective. But the adaptive mechanisms can also be understood differently: they can be considered as forms of action that show “satisfactory” results in front of some classes of problems. “Satisfactory” means here that they correspond to the logic of optimum or best solutions in the mathematician’s sense. This is the case in the theory of situations that looks at these forms of actions under the epistemological perspective. Beyond the boundary that defines the class of problem where knowledge shows itself to be satisfactory, these forms of action generate errors. That is to say, they behave in a way that is no longer suitable in the sense of optimal, mathematical adaptation. Knowledge encounters an obstacle. The crossing or overcoming of the obstacle ineluctably requires the appearance of new knowledge.

How far and to what extent do we find similar conceptions of knowledge in other educational research traditions? I would like to suggest that it is here where we can find a reference point that can allow us to find differences and similarities in our research traditions—sociocultural theories, critical mathematics education, socio-constructivist theories, and so on.

I mentioned above that in the genetic perspective on knowledge, the obstacle appears with a “functional necessity”. However, there are several ways to understand this need. In what follows I give two possible interpretations.

The first interpretation, and perhaps the most common, is to see this need as internal to mathematical knowledge. This would involve conceiving of mathematical knowledge as being provided, in a certain way, with its own “internal logic.” This interpretation justifies how, in the epistemological analysis, the centre of interest revolves around the content itself. Social and cultural dimensions are not excluded, but they are not really organically considered in the analysis (D’Amore et al. 2006). To use an analogy, these dimensions constitute a “peripheral axiom” which we can use or not, or use a bit if we will, without compromising the core theorems (or results) of the theory.

In the second interpretation, the development of knowledge appears intimately connected to its social, cultural and historical contexts. So we cannot conduct an epistemological analysis without attempting to show how knowledge is tied to culture, and without showing the conditions of possibility of knowledge in

---

5 Epistemological obstacles “are those to which knowledge cannot and must not escape, because of their constitutive role in the target knowledge.”
historical-cultural layers that make this knowledge possible. It is here that we find Michel Foucault’s conception of knowledge, whose influence in the French tradition of mathematics education has remained, surprisingly, relatively marginal.

What is important to note here is that behind these two interpretations of knowledge and its development are two different conceptions of the philosophy of history. In the first interpretation, history is intelligible in itself. In the second interpretation, history is not necessarily intelligible. To be more precise, in the first interpretation, in which the theoretical articulation goes back to Kant (1991), the conception of the history revolves around the idea of a reason that develops by self-regulation. History is reasonable in itself. There are aberrations and ruptures, of course, but if you look more closely, history appears intelligible to reason. Here, “history is a slow and painful process of improvement” (Kelly 1968, p. 362). In the second interpretation, in which theoretical articulation goes back to Marx (1998), history and reason are mutually constitutive. Their relation is dialectical. There is no regulatory, universal reason. The reason is historical and cultural. Their specific forms, what Foucault calls epistemes, are conditioned in a way that is not causal or mechanical, by its nesting in the social and political practices of the individuals. It is precisely the lack of such a nesting in the rationalist philosophies that Marx deplores in The German Ideology: “the real production of life appears as non-historical, while the historical appears as something separated from ordinary life, something extra-supeterrestrial” (1998, pp. 62-63). He continues further: those theoreticians of history “merely give a history of ideas, separated from the facts and the practical development underlying them” (1998, pp. 64–65). In the Hegelian perspective (Hegel 2001) of history that Marx prolongs in his philosophical works, it is, indeed, in the socio-cultural practices that we must seek the conditions of possibility of knowledge, its viability and its limits. Reason is unpredictable and history, as such, is not intelligible in itself. It cannot be, because it depends on the reasons (always contextual and often incommensurable between each other) that generate it.

In this philosophical conception of history, what shape and role could the epistemological analysis have? And what could be its interest in different traditions of research on the teaching and learning of mathematics? Concerning the first question, one possibility is the use of a materialist hermeneutic (Bagni 2009; Jahnke 2012) that emphasises the cultural roots of knowledge (Lizcano 2009; Furinghetti and Radford 2008). Concerning the second question, the reasons already given by Artigue in the early 1990s seem to me to remain valid. These reasons can undoubtedly be refined. This refinement could be done through a reconceptualization of knowledge itself, reconceptualization that might consider the political, economical and educational elements that, as suggested previously, come to give their strength and shape to knowledge in general and to academic knowledge in particular. The topicalisation of epistemology in the different theoretical frameworks and the different traditions of research would be an anchor point to better understand their differences and similarities.
2.9 Concluding Comments

Abraham Arcavi, with the support of Takeshi Miyakawa, convincingly makes the point that establishing connections between theoretical frameworks is important for mathematics education as a scientific domain but is also very difficult, especially if these frameworks have arisen in different cultures and responded to different problématiques. A major reason for this difficulty lies in the implicit assumptions underlying the work of researchers and the questions they ask. Hence, extensive and intensive dialogues are needed to make progress. Abraham has shown a direction for such dialogue, and Takeshi has experienced it in the practice of his research in France, in the USA and in Japan. Nevertheless, such communication remains fraught with potential misunderstandings.

Jeremy Kilpatrick highlights these communicative difficulties from the point of view of "translation" in his contribution, but he shows how such translation must reach far deeper than language. A translation between cultures is involved cultures that incorporate different views of schooling and education, as well as different views about the role of theory in mathematics education research, as Paolo Boero has expounded eloquently and exemplified clearly in his contribution.

Radford takes a further step when he encourages us to follow Michèle Artigue's lead (of 25 years ago) in investigating the role of epistemology in mathematics teaching and learning. He explains how epistemology has the potential to lead beyond the mere recognition of the differences and difficulties of translation: refining the analysis of the epistemological foundations underlying different theories in different cultural contexts can lead to a deeper understanding of the differences and similarities and hence support building bridges.

The four contributors to this chapter point out that one needs a deep understanding of both cultures, the one translated from and the one translated into, in order to be able to build bridges, and they all point to Michèle as having developed such deep understanding in her own and foreign contexts of mathematics education research. In particular, Michèle's deep epistemological questioning has made an essential contribution to her being exemplary in connecting researchers from different cultures working in different paradigms.

The CERME working group on theory was mentioned repeatedly, and indeed a sustained effort at establishing deep bridges between theories has sprung from that working group and prompted a group of researchers to not only lead dialogues between theories but to look at different aspects of a classroom lesson by means of different theoretical frameworks, and to compare and connect these frameworks while trying to formulate and answer research questions. A comprehensive description of this effort has recently been published in book form (Bikner-Ahsbahs and Prediger 2014). Not surprisingly, one of the leaders in these efforts over the past decade has been Michèle.

All contributors have pointed to the central role Michèle has been playing and continues to play in many facets of mathematics education research (and practice—but that's for other chapters in this book). We cannot express it better than Abraham
Arcavi does in his piece, so we join him and, in the name of all authors of this chapter, repeat how impressed we are by her as a devoted teacher, as a “bridge builder” (between the knowledgeable and the less knowledgeable, between the French tradition and other schools of thought, between mathematicians and mathematics educators); and by the vast scope of her knowledge and wisdom.

References


In the introduction to the proceedings of the working group of UKRDM and in Norway, Aunøen et al. (2007) wrote:

"When a research traditionally, we need to be aware that the education between mathematics and different research orientations in mathematics education practice join different theories, which different researchers interpret as well as value.

As a consequence of this call for collaboration, a "networking group" was conducted by Agnieszka Bilska-Antczak and Brisk. Since 2000, we have collaborated in the group with Anja and with a group of Danish researchers. The Networking Theorising Group aims to enhance the networking area as a research practice. In our view, the networking of theories is not only another research approach. The chapter is inspired by our eight years of research collaboration with Anja-Antczak and the members of the Networking Theorising Group. It is a result of our attempt to deal with the diversity of the theories involved in a method.

In the following sections, we describe our collaboration with Anja-Antczak and colleagues in the Networking Theorising Group. The "networking" that characterises the process of networking is described in Sect. 5.3. Finally, specific reasons for networking and the expected difficulties of the networking process.

I. Antczak (Ed.)
Faculty of Mathematics and Informatics Technology, University of Rostock, Germany.
E-mail: info@math.uni-rostock.de

© Springer International Publishing Switzerland 2015
S.M. Hartung et al. (Eds.), The Didactics of Mathematics: Approaches and issues. DOI 10.1007/978-3-319-26087-1_3