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§ 1 Introduction 

One of the emerging approaches in contemporary mathematical education studies is one which concerns the 

historical construction of mathematical knowledge (cf. v. gr. Glaeser, 1981; Filloy et Rojano, 1984). 

This approach, that of historical epistemological inquiry, helps us: 

(a) to better understand the cognitive difficulties experienced by our students, as well as to better interpret the 

errors and incorrect conceptualizations that arise when they learn specific mathematical contents 

(Vergnaud, 1990, p. 16); 

(b) to make more enlightened decisions concerning the knowledge being taught; in particular, it may give rise 

to new means of organizing and articulating this knowledge in the classroom2. 

 

Furthermore, the results of the didactic-historical epistemological inquiry can also lead to new paths of 

didactic research and provide us a deep understanding of the current concepts included in modern curricula. 

 Concerning this last point, it can be worthwhile to emphasize the role that historical research can 

play in service and pre-service teachers training programs. In fact, most of the time, the teachers' ideas about 

the mathematical content they teach derive from the only contemporary mathematical formulation of the 

content under consideration3. Now, the contemporary formulation is the result of a long process of 

conceptual changes and transformations and not necessarily the best starting point for students. However, 

lacking other alternatives, the contemporary formulation becomes a straightjacket in the choice of content to 

teach, in its organization, and in its articulation with other knowledges4. 

                                                           
1 This article is part of a research program supported by a grant from FCAR No. 95ER0716 (Quebec) and the Research 
Funds of Laurentian University (Ontario). 
2 For an example of a teaching sequence for the equation of 2nd degree see Radford, forthcoming1. 
3  For a general overview of this problem, see Chevallard, 1985. 
4  E. Barbin (1992, p. 576) provides a perfect example of the phenomenon to which we are referring:  she comments on 
the difficulty that teachers experience when trying to teach the concept of the limit of a sequence. In the old mathematics 
programs the concept of limit was taught using the formal definition. The new French mathematics programs encourage 
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 Where algebra is concerned, contemporary formulation favours, in particular, the 'symbolism' of 

algebra (Lefebvre, 1991/92); in this context, algebra is often seen as the mastering of a certain symbolic 

language so, right from the beginning, all efforts in the classroom are made for students to become competent 

in this language.  Historically, however, the 'symbolism' (in its modern meaning, the one that we find in 

today's school texts) did not become the driving force of algebraic development until the Renaissance (that is, 

more than 30 centuries after the first algebraic ideas had seen the light of day!) 

 Is it possible to introduce algebra in school without having the immediate objective of mastering the 

modern symbolic language? When we ask student teachers this question, and ask them to elaborate a teaching 

sequence for the introduction of algebra excluding the use of the usual symbols (x, y, z, ...), they are 

dumbfounded; for them, algebra without symbols simply does not exist. Even though it is not a matter of 

students in Junior high school, in the construction of their knowledge, following the same path as the ancient 

mathematicians, it seems to us that the back-tracking, or the intellectual dépaysement, allowed by historical 

analysis furnishes teachers with some new reference points and a greater flexibility in their classroom 

choices. 

 However, resorting to the history of mathematics does cause didacticians certain problems of a 

methodological order. The didactic nature of the questions that guide the historical research often means that 

the ancient texts must be read following a different methodology than that which is usually found in 

"classical" works and articles concerning the History of Mathematics5. Without giving all the credit for a new 

historiographical invention to the didactical research of mathematics, Thomaidis (1993, p. 71) says: 
 

"... the questions posed by didactics require new historical research that penetrate to 
remarkable depths and bring to the surface matters that had not until now occupied the 
historiography of mathematics". 

 

Recently one has seen many paradigms appear within a didactical historiography framework, each one being 

a function of a given problem and a particular conception of mathematical knowledge. It is not our purpose 

here to discuss their similarities or their differences. Yet, we can briefly note that, in our case, our 

historiographic didactic research program6 focuses on the investigation of the social roots in which 

mathematical activity is embedded and in the investigation of the functional triadic dimension of concepts, 

problems, and the procedures of problem-solving. Given that a concept cannot be limited to its formal verbal 

formulation, we think that its nature can be better grasped in the dynamic relationships that tie the concept to 

other concepts, to the problems to which it applies and to the procedures of resolution that one constructs in 

order to solve these problems (Radford, 1993a; 1993b). 

 

                                                                                                                                                                                 
to no longer use this definition as the starting point and suggest that the concept of limit should be reached through the 
problems themselves; E. Barbin notes how this change causes the teachers great difficulty. 
5This point is discussed in detail in Radford, 1995. 
6  The Didactic Epistemology whose bases can be found in: Radford, forthcoming2. 
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The article, which focuses its attention on the specificity of «single unknown algebraic thinking», is part of an 

on-going research program whose goal is to make a contribution to the understanding of the development of 

algebraic thinking. Our study derives from the fact that, often, in school programs, the methods of resolution 

of word-problems used to introduce algebra are based solely on the use of one unknown, while the 

introduction of the other unknowns follows a few years later7. Therefore it is only fitting, from a teaching 

point of view, to try to understand clearly the characteristics of «single unknown algebraic thought»8. 

 In order to obtain some important didactic information related to this, a study of the history of 

algebraic ideas seems to be one of the most suitable places to explore. In fact, history shows that the 

invention of the second unknown was a late phenomenon9. Thus algebra, for many centuries, was based 

solely on one unknown. A thorough didactic-epistemological analysis of algebra during its youth - i. e.  when 

it still only had one unknown - can then help us to better understand the profound meaning of the first 

algebraic ideas and then, further on still, help us to draw out information that can be used in teaching. 

 Given the above, we propose here a study of mediaeval Italian algebra which will look at various 

types of problems and the methods used to solve these problems. However, as we said before when we 

mentioned the main lines of our historical epistemological approach, the comprehension of the cognitive 

elements underlying the algebraic activity has to take into consideration the socio-cultural dimension by 

which this activity is embedded and with which it interacts–an interaction that shapes the mathematical 

activity itself10. The cognitive structure of mathematical thought, in general–and of algebraic thought, in 

particular–has to be scrutinized, in our approach, in its social and intellectual environment and cannot be truly 

grasped except through the merging of cognitive and social factors. Thus, in the section that follows, we will–

within the limitations of this article–make an incursion into the social and intellectual environment of 

mediaeval Italian algebra. 

 

§ 2 Social and Intellectual Factors in Mediaeval Italian Algebra 

The western algebraic current in question here has its roots in Arabic algebra and is part of an intellectual 

movement dating back to at least the 12th century. It is in this period that Latin translations of certain 

mathematical works appear in al-Andalus (the region of Spain that was dominated by the Moslems from 711 

to 1492). Thus, the first part of the Traité Concis des règles de l'al-jabar et l'al-muqabala of the al-

Kwharizmi is translated by Robert de Chester in Segovia, in 1145 and by Gerardo of Cremona in Toledo only 

                                                           
7  That which is the case in Ontario and Quebec. 
8  In contemporary school programs, algebra is not only introduced through the resolution of word-problems but also, 
among others, as a tool of generalization and modelization (cf. Bednarz, Kieran, Lee (ed.) forthcoming). Nonetheless, it is 
necessary to keep in mind that the key concept in the first case is that of the unknown, while, in the other cases, the key 
concept is that of the variable and that these two concepts are completely different (cf. Schoenfeld and Arcavi, 1988; for 
an epistemological analysis of the differences between unknowns and variables, see Radford, forthcoming3). 
9  Historically, there is a gap of more than 13 centuries between the conception of the 'first unknown' and the conception 
of the 'second unknown':  cf. Bednarz et al., 1995. 
10I do not believe that there exists an ideal mathematical theory –rational, timeless, independent of social stakes– towards 
which successive mathematical theories would, more or less, move towards over time. 
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a few years later. Three other important works of this era include: the Incipit prologus in libro algoarismi di 

practica arismetrice of Joannes Hispalensis (John of Spain) that has one chapter about algebra, the Liber 

Mensurationum of Abû Bekr that was written more or less at the same time as al-Kwharizmi's work and 

translated into latin by Gerardo of Cremona, and the Liber embadorum of Savasorda (an Arabic-inspired 

work belonging to the surveyors' tradition, like that of Abû Bekr's) translated from Hebrew to Latin in 1116 

by Plato of Tivoli. 

 The Western intellectual activity of the 12th century was linked to a favorable reception of the 

Sciences in royal courts, which encouraged astronomy, agriculture, medicine and mathematics (for instance, 

the ophthalmologist Sulayman b. Harit al Quti left Toledo and went to Seville in 1160, drawn by the 

patronage of the almohades); scientific ideas were then spread to other places beyond the bords of the al-

Andalus, where a growing economic development of cities like Florence, Venice, and Pisa, needed capable 

people to efficiently carry out calculations–interest calculations, resale prices, insurance costs for travel (by 

land or sea), etc.11 Economic needs led to the rise and the development of new commercial knowledge that 

resulted in the creation of a new educational institution:  the Botteghe or the Scuole d'abaco  (Abacus 

Schools). These schools were the final step in professional formation for someone who wanted to work in a 

bank, in public office, or in some commercial office (e.g. cloth manufacturing or construction offices); these 

schools were also attended by those who, later, wanted to pursue a career in painting, sculpture or 

architecture (Franci, 1988, p. 184). The Maestri d'abaco provided the teaching, which was made up of 

'courses'. In one of Florence's schools, directed by Master Francesco Galigai at the beginning of the 16th 

century, one finds 7 consecutive courses: the first one deals with the basic arithmetical operations of addition, 

subtraction and multiplication; then there are three courses in division whereby the student learns to divide 

with one, two and finally three or more digits; next, a course on fractions, another on the rule of three, and 

finally a course about the Florentine monetary system12. 

 Algebra does not seem to have been a part of the ‘basic teaching' in the abacus schools. It seems that 

algebra was only taught to an elite group, reserved for only the few students that had a special interest in 

mathematics or for those who wished to become abacus masters (cf. Franci, 1988, p. 185; Goldthwaite, 1972-

73, p. 426).  Nevertheless, it is important to note that even if at the beginning Italian mediaeval algebra 

appeared to be a tool for the resolution of non-practical problems13, it then became widely used in 

commercial applications. According to Master Benedetto of Florence, author of a sort of mathematical 

encyclopedia of the 15th century14, it was Master Biagio (deceased circa 1340) who could take credit for 

                                                           
11  Cf. Le Goff, 1956. 
12  The preceding information comes from a contract between M˚ Galigai and Giuliano di Buonaguida della Valle who 
was hired as an assistant at Galigai's school.  The contract was published in Goldthwaite's article, 1972-73. 
13  The most important work that served as a reference point to italian mediaeval algebra –the chapter 15 ofLiber Abaci, 
written in 1202 (with a second version written in 1228) by Leonardo Pisano (or Fibonacci), son of a merchant and close to 
the court of Frederick II– contains only one problem related to commercial mathematics. 
14  Included in the manuscript L.IV. 21 of the Biblioteca degl'Intronati di Siena (a description of the content of this 
important manuscript can be found in Arrighi, 1965). 
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successfully having applied algebra to the resolution of commercial problems (Franci and Rigatelli, 1988, p. 

28). 

 Besides the potential applicability of algebra in commercial problems (e.g. the calculation of 

compound interest), the study and the development of algebra were motivated by the prestige and the social 

recognition given to the Maestri (recognition related to the jobs that the abacus master could be called upon 

to do15). 

 What is known of Italian mediaeval algebra comes from the works of the Maestri; works often 

called Trattato d'abaco or Trattato d'arismetica pratica, etc. The structure or the chapters of these works 

vary. In certain cases they are simply a collection of problems with their solutions while, in other instances, 

the subject matter is presented in a more structured fashion.  In this latter case, the steps taken, grosso modo, 

are to introduce the three types of numbers that are "useful in algebra"; i.e. the radix (the root) that the Italian 

abacus masters called la cosa (the thing); the census (a treasure) which is the square of the thing and, finally, 

the denariis (tokens) or numerus simples the numbers having no relationship to the root or square16. The 

combination of these numbers allowed one to obtain the classification of equations into 6 'cases'.  These cases 

or 'canonical equations' are already outlined in the Traité Concis sur les règles de l'al-gabr et l'almuqabala of 

Al-Khwarizmi written in Bagdad between 813 and 833.  What follows are (in modern notation) the six 

mediaeval cases, subdivided in simple and compound (or mixed) equations: 

Simple Cases: 

(a) ax2 = bx  (b) ax2 = c  (c) ax = b 

The second case, for example, was stated as:  "Treasure equals numbers". 

In modern notation, an example of an equation belonging to this case would be 2x2 = 15. 

Compound Cases (or mixed equations): 

(d) ax2 + bx = c (e) ax2 + c = bx (f) bx + c = ax2 

Case (e), for example, was stated as:  "Treasures and numbers equal things". For each case, a 'rule' or 

algorithm was given in order to find the thing and the treasure (i.e. the square of the thing). Usually, one 

began by giving the rule for the particular case where a=1.  Then the case would be reduced to where a≠1 by 

dividing the 'coefficients' of the equation by a. For example, in order to solve the case that we have called (e), 

one begins by giving the 'rule' for the particular equation   x
2 + c = bx  This rule states that one has to 

subtract the numbers from the square of half of the things, and that the root of this result has to be subtracted 

from the half of the things. In modern notations, then, the rule to solve the case of     x
2 + c = bx  is: 

    x = b
2 − b

2( ) − c . The "general" case (e),   ax2 + c = bx  is first solved by dividing the quantity of things 

                                                           
15  Franci (1988, p. 183) mentions that the abacus master would often be called upon to calculate the price for the 
construction of buildings, to verify or carry out the calculations of mercantile companies and could also be consulted in 
the calculation of profits and the prices of grains and other merchandises. Goldthwaite (Op. cit. p. 428) mentions that the 
well-known abacus master, Giovanni di Bartolo, at the beginning of the 15th century, was called in several times as a 
consultant in the construction of the dome of the Santa Maria del Fiore Cathedral. 
16  That is the case of the Liber Abaci (Boncompagni, ed., I, 1857, p. 406). 
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and the quantity of simple numbers by the quantity of treasures, i.e. by dividing 'b' and 'c' by 'a' in the 

equation     17, that which reduces the problem to the case ax2 + c = bx   x
2 + c = bx . Given that negative 

numbers did not exist at that time, the Maestri were aware of the fact that case (e) did not necessarily have a 

solution18. 

18 3
4 = 10t

18 3
4

 We do not know the exact origin of the rules of the 'people of the al-gabr' (i.e. the algebraists) as 

they are referred to by Abû Bekr in his Liber Mensurationum. However, we do know that the Traité Concis 

of Al-Khwarizmi raises the tradition of algebraists to a scientific level –a tradition, which, perhaps, until that 

point, had only been handed down orally among surveyors. The Traité Concis  not only serves as an 

organized written exposé of the subject matter but it also provides a geometrical explanation (completely 

different from the Euclidean tradition:  cf. Jahnke, 1994, pp. 143-146) of the 'al-gabr's' rules (Høyrup, 1994). 
For example, here is the geometrical explanation for the equation t  

2 +  (we will encounter this 

equation in the next section): 

 The treasure (i.e. term t2) represents the area of the 
square ab while    is seen as the area of the rectangle bg. 

According to the equation, the square ab and the rectangle bg 

form a large rectangle eg with an area equal to 10t. As ae = t, 

then, ag = 10.  The segment ag is divided into two equal 

parts; with i being the middle point. The segment ih is 

lengthened as far as r so that rh = bh. Hence, rg is a square 
with the following area:  

10
2( )2

, i.e. 25. 

 

Let t be the point so that hi = td.  Then, area rg minus area bg = 
area of rectangle rt. Therefore,   25 −18 3

4 = 6 1
4 = area of rectangle rt. Furthermore, it is easy to see that rt 

is, in fact, a square. Therefore its side, rh, is equal to  6 1
4 = 2 1

2   On the other hand, ri = 5, then ih = 

  5 − 2 1
2 = 2 1

2 , hence the value of the thing. 

a

be

g

d

a

be

g

d
h t

r
u

i

Certain abacus books (e.g. Pisano's Liber Abaci and La reghola de algebra amuchabale of Master Benedetto 

of Florence, Salomone, ed., 1982) provide geometrical explanations of the resolution of algorithms 

concerning the above-mentioned compound cases (i.e. the mixed squares equations). In other books, one can 

                                                           
17  The "coefficients" of mediaeval equations are poorly represented by our modern symbolism:  in fact, ax2, for 
example, expresses a multiplication between two numbers, a and x2, while in the mediaeval idea it is a matter of 
expressing a quantity of things or treasures that one has.  The mediaeval "coefficients" are "numbering numbers" 
(nombres nombrants) (cf. Radford, forthcoming4). 
18  Pisano, for example, says that Case  (e) does not have a solution "unless the numbers are equal or less than the square 

of half of the roots", i.e.     
b
2( )2

> c . Then, supposing that this last condition is met, he adds:  "and if the question is not 
solved through subtraction, it will, without a doubt, be solved through addition", i.e. the thing will be found by making 

    x = b
2 + b

2( ) − c (cf. Boncompagni, ed., I, 1857, p. 409). (N. B.: In this article, all the translations from Italian or 

Latin into English are ours). 
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find a short introduction of algebraic calculation; it is here that one learns how to carry out elementary 

operations on binomials. Nevertheless, the heart and the goal of the works or chapters dedicated to algebra is 

not to explain the geometrical algorithms nor to learn how to carry out calculations on binomials but to show 

how to use the techniques of algebra to solve word-problems19.  

 Our preceding discussion suggests that algebra was intended to be, above all, a problem-solving tool 

(based in different techniques that we shall analyze in the next section) used to solve a wide range of 

problems. The question that we can raise now is that of understanding the algebra's problem-solving vocation. 

It seems to me that the problem-solving nature of mediaeval Italian algebra can be understood, on the one 
hand, from its conceptual roots with the numerical false-position methods (cf. Radford, forthcoming2) and 

from the surveyors' geometrical methods that one finds in Abu Bekr's Liber Mensurationum; both types of 

methods are the problem-solving kind as well. However, algebra appears to be a 'research program' with a 

higher problem-solving fertility than the other 'programs'. Algebra also allows one to tackle different 

problems using the same technique. In other words, the family of problems associated to a given algebraic 

technique is larger than the family associated to an analogous technique based on numerical or geometrical 

tools. Algebra appears, then, as a new device to deal with more problems in a more unified and systematic 

way.  

 On the other hand, the problem-solving vocation of algebra can also be understood from the social 

context in which it developed. In fact, the abacus Master was, above all, a very practical individual; and not a 

humanist nor a philosopher. Personal prestige with its social and economical consequences depended upon 

his individual intellectual capabilities; the resolution of problems and difficult riddles (like the ones that we 

will see in the 3.2 of the next section) constituted an ad hoc instrument of social recognition for the master20. 

The master's algebraic speculations were thus drawn, at the same time, from the applied problems and from 

non-practical problems–those reserved for the elite of the ‘initiated’ students.  

 

§ 3. Problems and Methods in Italian Mediaeval Algebra:  Operating the Unknown 

In the previous section, we suggested that mediaeval Italian algebra developed as a set of powerful techniques 

to solve word-problems. In order to try to understand this technique (each consisting of a family of problems 

along with the method that solves them), it is worthwhile to examine certain types of problems contained in 

                                                           
19  To show the vast extent of the different parts of an algebra text, let's consider La reghola de algebra amuchabale of 
Master Benedetto.  This text is divided into three chapters.  In the first one, the author introduces the useful numbers in 
algebra as well as the 6 cases with the geometrical justification of the compound cases, as in the tradition of Al-
Khwarizmi.  In the second chapter, there is a small introduction to algebraic calculation while the rest is dedicated to the 
resolution of word-problems. Salomone's edition of M˚ Benedetto tratise contains 104 pages. The first chapter has 
approximately 18 pages; the second, approximately 10 pages; and the third, that of the word-problems, approximately 74 
pages. 
20For instance, Pisano met at the court of the emperor Frederick II the philospher and mathematician Giovanni da 
Palermo who proposed to him to solve some mathematical riddles. In a letter sent to the"gloriosissimo principe Federico", 
included in the first part of  his book The Flos, Pisano says: " I have started to write a book to the glory of his Majesty and 
I have called it the Book of Squares" (Picutti, tr., 1983, p. 299). Some of the problems contained in The Flos  had also the 
same origin: they were riddles posed at the emperor's court.  
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the algebra chapters of the abacists' treatises and their relationship with the methods of resolution employed. 

We are most interested in carefully examining the conceptual bases underlying the operation on the unknown 

in the problem-solving procedures. 

 Given the limitations of this article, our study will analyze of two families of problems that appear 

frequently in the abacist algebra. The problems of the first family (section 3.1) are problems about numbers; 

i.e. 'theoretical' problems formulated in a mathematical context. Our interest in them lies in the fact that these 

problems are 'purely algebraic'21. 

 The second family of problems (section 3.2) is made up of riddles belonging to traditional non-

algebraic mathematics. Unlike the problems of the first family, these problems introduce people, yet are still 

far from being practical problems. Another difference has to do with the structure of the problem statement. 

 In section 4, in order to better understand the limits of «one unknown algebraic thinking», we will 

discuss the scope of algebraic methods based on one unknown. 

 Given that the Italian algebraists had rules to solve the cases or canonical-type equations from (a) to 

(f) (and still others that they later added later, such as ax3 = c; see Egmond, 1978 and also Franci and T. 

Rigatelli, 1985), our investigation of their problem-solving procedures will be based on the analysis of three 

structural elements of an algebraic problem-solving procedure.  These are: (1) the choice of the unknown and 

the parametrization22, (2) the translation process (which makes it possible to obtain an equation that translates 

the word-problem) and (3) the transformation process (whose goal is that of transforming the translating-

equation into one of the 'canonical cases'). 

 

§ 3.1 Quasi-equation Problems 

The most popular problems solved by algebra in the abacist texts are those whose statement suggests the 

choice of the unknown and the parametrization at the same time inducing, in a most explicit manner, the 

setting up of the equation. We shall call these problems the quasi-equation problems. In many of these 

problems, one is asked to divide 10 (some times 12 or another number) into two parts so that, if one carries 

out certain calculations with these parts, one would obtain a given result. The following problem, taken from 

Pisano's Liber Abaci, is one of the recurring problems in abacist algebra. 

"Divide 10 into two parts, add together their squares, and that makes  62 1
2 ."23 

                                                           
21  In reality, except for the truly simple problems, these problems cannot be solved by the false-position methods; on the 
other hand, in light of the historical evidence available today, these problems seemingly can no longer be solved by the 
surveyors' geometrical methods. Most of these problems appear then as genuine algebraic problems. 
22  Parametrization is the process of finding suitable relationships between the sought-after quantities and the single 
unknown available, i.e. the thing. 
23 The same problem is found in Raffaello Canacci's Ragionamenti d'Algebra:  i Problemi (ca. 1490) (Procissi, ed., 1983, 
p. 28), in Antonio de Mazzinghi's Trattato di Fioretti (Arrighi, ed., 1967, p. 23) except that Canacci uses 60 and 
Mazzinghi uses 82 instead of 62 1

2 and in Piero della Francesca's Trattato d'Abaco (Arrighi, ed. 1970, p. 126). (In section 
34 we will make reference to Mazzinghi's and della Francesca's problems in a more detailed way). This problem is also 
found in Rafael Bombelli's Renaissance work, L'Algebra (Bortolotti, ed., 1966, p. 341), except Bombelli divides the 
number 12 into two parts instead of the number 10. 
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We need now to discuss in some detail Pisano's problem-solving procedure. With regards to the 

parametrization process, as illustrated by the quoted text, in order to find each part, Pisano chooses the first 

number to be the thing so that the other part becomes ten minus the thing. As we can note, there are no 
heuristic difficulties in reaching an equation that translates the problem (i.e. 100 + 2t2 - 20t =  62 1

2 ). In fact, it 

suffices to follow the statement of the problem to get the equation; the only difficulties that can arise are the 

technical computations of the square of the thing and the square of 10 minus one thing. Today, these 

calculations are carried out according to the "rule of signs"; then perhaps, it would be more appropriately 
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called the "rule of the multiplication of the missing numbers and the added numbers". Once the translating 

equation has been found, Pisano needs to transform this equation into one of the six canonical cases. The 

transformations are driven by the key idea of restoring the ‘incompleted’ or ‘broken’ algebraic terms. In order 

to understand what a ‘broken’ term means, we have to remember that mediaeval mathematics did not have 

negative numbers. Abacist mathematicians conceptualize algebraic expressions with subtractions as 

incomplete objects. Thus, the subtracted part (let us say B) in an expression A-B is seen as a missing part of 

the original part A (this is why the missing parts are often placed at the end of the expressions in the 

calculations: see Pisano's procedure).  
 In this line of thought, the first member of the equation 100 + 2t2 - 20t =   62 1

2  is seen as an 

incomplete member in that it is deprived of or diminished by 20 things; according to the algebraic mediaeval 

idea, this term must be restored24. In order to accomplish this, Pisano, first allots the 20 missing things to the 
first member and, then, he allots 20 things to the second member. Next, he subtracts   62 1

2  from each 

expression and gets    2t 2 + 37 1
2 = 20t ; this equation, then, can be solved according to the rule of case (e). 

According to the mediaeval tradition, as we said before, the geometrical support is not referred to in this step 

of the problem-solving procedure; Pisano only shows what calculations have to be done. 

 To better understand the algebraic problem-solving procedure, we have to note that the sequential 

structure of the resolution procedure is strongly conditioned by the lack of negative numbers. Thus, Pisano 
could not have begun by subtracting 100 from each member in the equation 100  + 2t2 − 20t = 62 1

2  (the 

member on the right not having enough); nor could he have begun by subtracting 62 
1
2  from the member on 

the left of the equation because, in this case, he would have had to do the same to the member on the right –

and the right member should disappear while the new left member should vanish!25 In the Maestro d'abaco's 

mind an algebraic term cannot be equal to zero. In fact, mediaeval algebraic terms are exactly formed from 

calculations, and a calculation always gives something. An algebraic term is thought of something containing 

a certain quantity of numerus simples. Thus, in the abacist thought, it seems unthinkable that the amount of 
numerus simples carried out by an algebraic term (in this case the term100  + 2t2 − 20t − 62 1

2 ) could be 

exactly equal to nothing 26. 

 Concerning the conceptual basis underlying the transformation process, it is also important to note 

that the rule of al-gabr, or of restoration, makes it possible to operate with the unknown. In fact, when the 
                                                           
24  The fundamental idea of the rule of al-gabr (from where derives our modern term algebra) is  actually that of 
restoring or repairing a incompleted or broken term. It is in this sense that Al-Kwharizmi used it (cf. Radford, 
forthcoming4) and this is the abacist meaning also. For an etymological study of the term al-gabr see Saliba, 1972. 
25In fact in such a case, we should have     100 + 2t 2 − 20t − 62 1

2 = 0  
26 In order to better understand why an algebraic term cannot be equal to zero, we must remember that zero was not 
considered by the abacists as a number (even though the symbol "0" appears in the written form of some numbers, like 
the number "ten"). In fact, a number was defined as a collection of units (In De Arithmetica Compendiose Tractata, his 
author -Master Guglielmo, 12th Century- says: "Numerus est unitatum collectio vel quantitatis acervus ex unitatibus 
profusus"). It could be worthwhile to note that the Maestri d'abaco needed to relate numbers to something concrete; this 
can be detected in their recurrent (apparently unnecesary) reference to numbers (numerus simples) as denariis. It seems 
that this concrete way of thinking excluded strongly any possibility of considering zero as a number, then, a fortiori, it 
was impossible to think of zero as a possible solution of an equation or the numerical value of an algebraic term. 
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‘broken’ term is repaired, it is necessary to add the missing unknown part to the other term of the equation. 

This action makes it possible to handle (in a particular way) the unknown. 

 The functioning of this repairing or restoring rule can be stated formally as follows: 
 

If A(t) and B(t) are two algebraic terms (in the abacist sense) and α t is a certain amount of 
things, then, from A(t)-α t = B(t) one can get A(t) = B(t) + α t. 

 

However, this rule cannot be seen as a rule of transposing terms: materially, the new term α t appearing on 

the right side of the equation is not the same as the corresponding analogous term on the left side. In fact, 

before being repaired, this last side was missing the term α t. It is not possible to transpose from one side to 

another side of the equation a term that actually was not there! 

 The restoration rule makes it also possible to operate on the square of the unknown (the treasure), as 

it appears in this next problem, taken from Pisano's Liber Abaci: 
 

"I divided 12 into two parts and I multiplied the parts and I divided the result by the 
difference of the two parts and I got 4 

1
2 ."  (Boncompagni, ed., I, 1857, p. 416). 

 

Pisano chooses the smaller part to be the unknown (i. e. the thing) so the other part becomes 12 minus the 

thing.  Now all he has to do is follow the order of the calculations as indicated in the problem statement. In 

modern notations, and representing the thing by t, Pisano's calculations would read as follows27: 

 

    
t (12 − t) = 12t − t2,  then 

12t − t2

12 − 2t
= 4 1

2 ,  so that 12t − t2 = 4 1
2 12 − 2t( ).Therefore 12t − t2 = 54 − 9t

 

By restoring the right side (from which 9 things are missing) and the left side (from which a treasure is 

missing) by giving each part one treasure and 9 things, Pisano arrives at the equation t2 + 54 = 21t which 

corresponds to case (f) like the equation in the previous example. 

 Regarding the Italian abacist's algebraic methods, there are, in this problem, two elements to be 

discussed: the first (occurring in the transformation process) is that of the numerical argument that makes it 

possible to handle the divisor in the translating equation. In fact, the validity of the algebraic transformation is 

(implicitly) assured by the property which ties together the three terms of a numerical division (the divisor is 

equal to the quotient multiplied by the dividend). Transposed to the algebraic realm, this knowledge is not 

questioned, only accepted. This illustrates a very interesting hierarchical relationship between the existing 

arithmetical knowledge and the algebraic knowledge under construction.28 

 The second point that we began to discuss in the previous example, namely the operation on the 

unknown. A careful reading of the last problem-solving procedure shows that, in fact, there is an operation on 

                                                           
27  A commented transcript of the original solution can be found in Radford (1992, p. 61). 
28  There are, however, other cases in which the justification of transformations made on algebraic terms is not based on 
numerical argument (even if that would have been easier) but on the basis of a geometrical argument (cf. Radford, 1993b, 
pp. 26-28). A task , which still remains to be accomplished, is that of determining the possible criteria used by the 
mediaeval Italian algebrists in choosing and inserting some arithmetical and geometrical properties in their algebraic 
reasonings. 
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the unknown that differs from the one that derives from the restoration rule seen previously. To arrive at the 

equation t , from the equation122 + 54 = 21t t − t2 = 54 − 9t , Pisano restores the two sides of the equation, 

which leads him to the following calculations on the left side of the equation:12 t − t2 + 9t + t2 = 21t . He has 

had to add 12 things and 9 things to get 21 things, achieving then a new kind of operation with the unknown. 

In fact, this is an operation made within the same side of the equation. It allows the Maestri to combine or to 

put together the unknown terms. We will refer to this rule as the ‘combining unknown terms rule’.  

 The operation on and with the unknown makes it possible within the abacist algebra to transform an 
equation with broken terms (like    ) into an equation without broken terms (i. e. 

). The question now is to know if the Abacus Masters were able to transpose an 

additive unknown term from one side of the equation to the other side (e. g. to transpose the thing "t" in the 

equation t + 12 = 35t - 60), something that cannot be achieved through the restoration and the “combining 

unknown terms rules”.  

αt − βt 2 = ′ α t 2 + δ − ′β t 

    (α + ′ β )t = ( ′ α + β )t 2 + δ

 Colin and Rojano (1991) detected the operation on the unknown in Bombelli's post-mediaeval work 

L'Algebra (1572). They suggested that the operation on the unknown and more specifically the rule of 

transposing terms were not explicitly used by mediaeval mathematicians (see also Rojano, 1994, Filloy and 

Rojano, 1989). 

 The operation on and with the unknown (and its square) as well as the transposition rule were, 

however, quite a widespread systematic practice in Mediaeval Italian (and Arabian) Algebra. For instance, in 

problem 23 of the Liber Abaci, we find, written in modern notations, the following 

equation:1040 ; Pisano then adds 194t to each side and takes away t2 from each side29, 

arriving at the equation8 (Boncompagni, ed., I, 1857, p. 418). In contrast to the ‘restoration 

case’, the operation of the unknown additive term t2 (i.e. the treasure) is done here on the basis of a 

subtracting action. Another example is found in problem 11 of the Liber Abaci (Boncompagni, ed., I, 1857, 

p. 412), where Pisano deals with an equation that, translated into modern symbolism, can be written as 

follows:  

+ 9t 2 − 194t = t2

t 2 + 1040 = 194t

 1
3

6t
10 − t + 6t = 39, 

then, operating with the unknown, he transposes the term 6t and gets 

      
3
1 6t

10 − t = 39 . − 6t

Other examples of this can be found in works by various other Abacus masters. An example of a linear 

equation (t + 12 = 35t- 60) is shown in Canacci's problem in section 3.2 of this article. For further examples 

see Paolo Gerardi's Libro di Ragioni (van Egmond, ed., 1978, problem 1) or La reghola de algebra 

amuchabale of Master Benedetto of Florence (Salomone, ed., 1982, p. 33). 

 The previous examples show then that the Abacus Master used three different rules to operate the 

unknown (the restoration rule, the combining unknown terms rule, and the transposition rule). These rules 
                                                           
29  "Restaura ergo res diminutas, et extrahe unum cenum ab utraque parte" –restore, then, the subtracted things and take 
out one treasure from each part. 
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allowed them to transform any equation of the form   ± at2 ± bt ± c = ± ′ a t 2 ± ′ b t ± ′ c  into one of the six 

canonical cases (and other cases of higher degree)30. 

 In the above-mentioned problems, we were asked to find only two quantities.  However, there are 

many problems in which we are asked to find 3, 4 or even 5 quantities. Here is a problem taken from 

Raffaello Canacci's Ragionamenti d'Algebra ...: 

 
"Find me three numbers so that the first is to the second as 2 is to 3; and that the second is 
to the third as 3 is to 4; and that the multiplication of the first and the second multiplied by 
the third equal the square root of 12".  (Procissi, ed., 1983, p. 10) 

 

Here is the first part of the solution: 
 

Therefore, suppose the first [number] is 2 things, the second is 3 things and the third is 4 
things.  Multiply 2 things by 3 things; you get 6 treasures.  Now you'll say 6 treasures times 
4 things equals 24 cubes (chubi) and that must make the root of 12.  So, observing the rule, 
divide the numbers by the cubes and find the cubic root and there you have the value of the 
thing.  Thus, we have the 24 cubes equal to the root of 12 [...]"  (Op. cit., p. 10) 

 

At this point Canacci has reached one of the canonical cases that were added to the first six (linear and 

quadratic) cases. 

 For our discussion we have to emphasize that even if the problem requires us to find three numbers, 

with only one available algebraic unknown, the structure of the problem is still chosen in such a way that the 

parametrization does not pose any problems. The problems, like the preceding one, are chosen ad hoc. In 

fact, as the previous examples suggested, the difficulty of solving quasi-equation problems lies with the 

calculations to be carried out on a transformational level using rhetorical language31. 

 

§ 3.2  Giving and Receiving Problems  

Another family of problems present in abacist algebra concerns two or more people who meet and exchange 

information about the amount of money they have.  The people give each other clues about how much money 

they have by suggesting that they lend a certain amount to or borrow a certain amount from the others. With 

these clues, one is supposed to figure out the original amount of money.  Here's an example from R. Canacci's 

Ragionamenti d'algebra ... 

 
 

                                                          

"Two men have a certain amount of money.  The first says to the second:  if you give me 5 
denari, I will have 7 times what you have left.  The second says to the first: if you give me 7 
denari, I will have 5 times what you have left.  How much money do they each have?" 

 

Here's the solution: 
 

30Of course, not all the terms in a same side of the equation can be subtracted terms! I am aware of the impossibility of 
our modern notations to capture the mediaeval ideas. Modern notations are good to carry out modern ideas only. 
31  For instance, it is easy to imagine the difficulties to do calculations in complex quasi-equation problems, like a 
Pisano's problem that translated into modern notations is the following:.

  
t

10− t + 10( ) 10− t
t + 10( )= 122 2

3 . However, we 

must not think that the word-problems that we call quasi-equation problems are merely equations expressed in rethorical 
language. In fact, problem statements and equations belong to two entirely different languages. Without this distinction in 
mind, we risk to misunderstand the abacist algebra. 
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Canacci's solution:  
The first man has 7 things minus 5; the second 
man has one thing and 5D #. 
The second [gives] to the first 5D.  He is left with 
a thing.  The first will have 7 things. 
 
Therefore, the first has 7 things minus 5D. He 
gives 7 to the second who has one thing and 5D, 
for which he asked, and the first will have 7 
things minus 12D. This is equal to 5 times the 
[amount] of the first. Therefore, multiply the 
amount of the first by 5 and that gives 5 times 7 
things minus 12, that which gives 35 things 
minus 60D. This is equal to 1 thing plus 12. Even 
up the parts by adding to each 60D and 
subtracting a thing from each part. This will give 
34 things equal to 72D. Divide the things, as the 
rule says, and the thing is 2 2/19 *. Therefore, 
since the thing is 2 2/19 , come back to the 
beginning of the problem. The first man had 7 
things minus 5D, the second man had a thing 
and 5D. Therefore, the first had 7 things minus 
5D, and the thing is 2 2/19 , multiply 7 by 2 2/19 , 
which gives 14 14/19 , subtract 5; 9 14/19  remains 
and there you have the amount of the first man. 
The second had one thing and 5D, add, then, 5 to 
the thing, that is, to 2 2/19, and you get 7 and 
2/19 and there you have the amount of the 
second man. And you always do your 
calculations in this manner. 
 
------------------------------------------------- 

Comments  
first man = 7x - 5 
second man = x + 5 
After the second person gives the 5 
denari, the amounts are 7x and x, 
respectively. 
 
 
After the first person gives 7 denari, the 
amounts are 7x - 12 and x + 12, 
respectively.   
Yet, one has: 
x + 12 = 5 (7x - 12) 
x + 12 = 35x - 60 
34x = 72 
x = 2 2/19  
 
 
 
 
Therefore, the first man = 7x - 5 
the second man = x + 5 
the first man = 7 (2 2/19 ) - 5 
           
          = 9 14/19  
 
the second man = 2  2/19  + 5 
  = 7 2/19  

(Procissi, ed., 1983, pp. 38-39)

#  5D means 5 denari (money of that time) 
* Canacci makes a minor error in his   calculation:  the thing is actually 2 2/17  

 

In this problem, the purely formal manipulation of the equation (i.e., the syntactical manipulation) is 

relatively simple if it is compared to the majority of the quasi-equation problems. Its difficulty lies in the role 

played by the unknown. In this case, contrary to the quasi-equation problems, the unknown does not 

represent the sought-after quantities thereby not rendering the parametrization as evident.  Nevertheless, if the 

problem is not too different (and if, in particular, the number of people does not increase) the same pattern in 

choosing the unknown and the same method of resolution can solve the problem. That is the case of the next 

problem of Canacci's Ragionamenti d'algebra ... that follows the problem discussed above; it is stated as 

follows: 

 
"One man says to another:  if you give me 5 denari, and I add them to what I have, I will 
have 1 and 7 times what you have left. The second says to the first:  if you give me 7 denari 
and I add them to what I have, I will have 5 times what you have minus two." (Op. cit., p. 
39). 

 

However, if the number of people increases, the problem becomes very difficult to solve using only one 

unknown; Cardano himself says as much in his Ars Magna (Witmer, ed., 1968, p. 71). 



15 

 It should also be noted that the «giving and receiving problems» seem to belong to a non-algebraic 

tradition of riddles32. For a long time, they were solved by false position methods. Using algebra to solve 

these problems in mediaeval times (as well as others of the same type that cannot be solved by false position 

methods)33 the Masters and their pupils had the opportunity to enjoy and to prove to themselves the fertility 

and the superiority of algebra with regards to arithmetic. 

 

§ 4.  On the scope of algebraic methods 

We said before that one of the most frequent kinds of problems in abacist texts is that in which one is asked 

to divide 10 into two parts so that, if one carries out certain calculations with these parts, one would obtain a 

given result. In section 3.1 we saw that one parametrization used by the Maestri consisted in expressing the 

parts or sought-after numbers as "a thing" and "k minus a thing" ("k" being the number to be divided into two 

parts). However, there was another parametrization based on ‘the half of the number’: the sought-after 
numbers are expressed as     "

k
2 plus a thing" and  "

k
2 minus a thing" . The origin of the last 

parametrization seems to date back to the emergence of algebra: in fact, this parametrization would be at the 

root of the "algebraic version" of a Babylonian false position method34. Let's look at a few abacist examples 

of this kind of parametrization. In a problem from the Liber Abaci, (problem 70 in Salomone's translation, 

1984, pp. 71-73), Pisano is drawn to divide 10 into two parts such that the sum of the first divided by the 

second and the second divided by the first gives 3. It is also a classic problem of abacist algebra. In fact, 

problems 63-71 of the Liber Abaci, according to the manuscript L.IV.21 of the Biblioteca Comunale di Siena, 

are related to this type of problem. To solve problem 70, Pisano designates the first part as 5 plus a thing and 

the second as 5 minus a thing. 

 In contemporary notation, the equation reads: 
5 + x
5 − x

+
5 − x
5 + x

= 3 

Pisano multiplies 5 minus a thing by 5 plus a thing which equals 25 minus a square; he then multiplies this 

result by 3 and gets 75 minus 3 squares. He equates this to the sum of the square of 5 plus a thing and to the 

square of 5 minus a thing, i.e. 50 plus two squares. Once he has arrived at this equation, which we will write 

as      75 − 3x 2 = 50 + 2x 2

= 50 + 5

 he restores the left side of the equation. In order to do this, he gives this side the 

3 missing squares and adds 3 other squares to the right side. In modern notation, the result would be 

    75 x 2   He then subtracts 50 from each expression and gets 25  = 5x 2  where he finds that the 

thing is equal to the root of 5. He can then easily deduce the sought-after numbers. 
 

     Here is another example taken from Maestro Antonio de Mazzinghi's Trattato di Fioretti. 
                                                           
32  In reality, these problems are ancient: they can be found in a collection of problems (probably gathered at the 
beginning of the 6th Century A. D.) called the Greek Anthology  (see Paton, ed., 1979, Book XIV, problems 145 and 
146). Nevertheless, one of Plato's commentaries suggests that these problems date back to, at least, the 5th Century B. C. 
33  For a beautiful example, see Giovanni di Bartolo's Certi Chasi (Pancanti, ed., 1982, problem 10, pp. 18-21). 
34  See Radford, 1993a; however, the idea is much more precise in Radford, forthcoming3. 
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"Divide 10 into two parts so that the sum of their squares equals 82." 

Mazzinghi provides three different solutions to this problem, however, it is the first one in which we are 

interested. The parametrization is the following: 
 

"Make it so that the first part is 5 plus a thing and the second part is 5 minus a thing". 
(Arrighi, ed. 1967, p. 23) 

 

Another example of this type of parametrization is found in problem 20 of Bombelli's L'Algebra (Bortolotti, 

ed., 1966, p. 326). 

 

This parametrization disappears progressively during the Renaissance as a result of a standardization of 

parametrization strategies. In fact, the first parametrization mentioned at the beginning of this section (let us 

call it the ‘direct parametrization’) tended to replace the parametrization based on ‘the half of the number’.  

 The primacy of the ‘direct parametrization’ over the ‘the half of the number’ parametrization can 

already be detected in Piero della Francesca's Trattato d'Abaco (15th Century; ed. Arrighi, 1970). In fact, 

della Francesca solves many problems of the type ‘Divide 10 into two parts such that ...’. If we denote by a 

and b the parts into which 10 has to be divided, some of these problems in the della Francesca's Trattato 

d'Abaco are the following (Op. cit. pp. 126 - 129): 

 (1) ab =2135    (2) a  
2 + b2 = 58 

 (3)     
a
b + b

a = 4 1
4     (4) 10

a + 10
b = 10   

  (5)     =ab 5 1
4 a − b( )    (6) a  

2 + b2 + (a− b) = 54 
  (7)     

ab
a−b =     (8) ab12   = (a − b)2  

 

In each problem, one of the sought-after numbers is represented by the thing and the other is represented by 

10 less the thing. Another example is given by Bombelli's L'algebra: even though he sometimes uses ‘the half 

of the number’ parametrization, the ‘direct parametrization’ is used quite more frequently. 

 However, the ‘direct parametrization’ as well as ‘the half of the number’ parametrization cannot be 

applied generally to problems dealing with more than two sought-after quantities. How, then, can one face 

problems with more than two sought-after quantities using only one unknown? We have seen in the previous 

section that one way was to make the sought-after quantities related in a certain specified proportionality (in 

fact this was the most frequent issue; see Cannaci's example at the end of section 3.1). The next example 

(where della Francesca asks to divide 10 into three parts) does not use a proportional relationship between the 

sough-after parts. Its interest comes from the fact that della Francesca keeps the direct parametrization that he 

used successfully in the previous problems (where there were two sought-after quantities only). The 

parametrization does not solve the new problem in general terms (a problem which has in fact more than one 

solution). Furthermore, as far as we can see from the text, della Francesca gives a rather arbitrary value to one 

of the sought-after quantities (as we have observed some students doing when they face problems with more 

                                                           
35The whole problem is then: "Divide 10 into two parts such that their multiplication makes 21". 
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than one unknown36) and seems to believe that he has solved the problem completely. The problem (op. cit. 

p. 134), translated into modern symbols, is the following: 

  

a+ b + c = 10

ac = b2
 

The problem-solving procedure begins in these terms37: 

 "Say that the first part is a thing, the second part 5 minus  I  thing and the third 5. Multiply   I  thing by 5, you 

get   5  things, and 5 minus   I  by 5 minus  I makes I and 25 minus 10 things". 

  

 At this point, della Francesca has reached the translating equation: 5  x = x2 + 25 − 10x . The next 

step is to transform the equation into one of the 6 canonical cases. He says: "Restore the parts giving to each 
part   10things". The final equation is then15  x = x 2 + 25

 

; after solving this equation through the 

corresponding rule, he finds that the first sought-after part is7 1
2 − 31 1

4 . He then says: "And the second 

[sought-after part] is 5 minus what is left from 7 
1
2  minus  311

4 ; and the third [sought-after part] is 5."38  

 This marvelous example shows us how a specific method (applied successfully to some specific 

problems) is applied to more complex problems. Whether or not della Francesca was aware of his incomplete 

solution, the example shows a concrete limitation of the particular methods of the «one unknown algebra». It 

was through the invention of the other unknowns that radical changes took place among the methods and the 

parametrization strategies. Thanks to the many possibilities offered by the emergence of these other 

unknowns, later on, ancient mathematicians were able to interpret the problem statement right away. Then 

again, one will also see other difficulties arise39. 

 

§5. Some implications for teaching 

The didactic epistemological analysis of abacist algebra made here shows that algebra was considered as a 

tool or a technique to solve riddles and word-problems. Our discussion about the social and intellectual 

context of the Italian mathematical activity of the 13th - 15th centuries, suggests that the problem-solving tool 

status of algebra of the time was intricately rooted in social and economic elements which shaped the 

practical nature of the Maestri d'abaco's knowledge (e.g. the social prestige that they could enjoy in their 

community, the possibilities that such a knowledge brought them in their work as mathematics teachers or as 

consultants to private and public businesses). The social elements cannot however give a complete account of 

abacist algebra. There are also cognitive elements to be considered. Nevertheless, the cognitive elements 

cannot be understood by isolating them from their own ‘intellectual mathematical context’, which shed some 

                                                           
36See Radford, 1994. 

37Della Francesca denotes the thing by   I and the treasure (censo) by I. 
38The problem ends with an alternative way to compute the second sought-after part: given that a=   7

1
2 − 31 1

4 and 

c=5, b can be deduced from the condition     ac = b2
. 

39  I deal with this subject in: Sur l'invention d'une idée mathématique: la deuxième inconnue (manuscript in progress). 
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light on the objectual and conceptual organization of the mathematical content itself. This is why we needed 

to consider the Arabian algebra legacy and the occidental mathematical activity of the 12th century. 

 Seeing the cognitive elements of the abacist algebra within the tradition of the surveyors and of the 

Arabian algebra, makes it possible to understand the core of the abacist algebraic problem-solving procedures 

and the very fundamental ideas underlying the operation of the unknown. Concerning this last point, the 

operation of the unknown -as we have seen- was based mainly on three basic rules: the first one is rooted in a 

very particular idea, which consists of seeing an algebraic expression, like 54-9t, as a defective or broken 

expression. To ‘repair’ it, we need to restore the missing part, that is 9t. This is done by applying the Arabian 

rule of al-gabr. The second rule which makes it possible to operate with the unknown, is that of combining 

the unknown terms within a same side of the equation (e.g.12  t − t 2 + 9 t + t 2 = 21t ). The third rule is the 

transposition rule (e.g. in the Pisano's example, the term 6t is transposed: 

 
 1

3
6t

10 − t + 6t = 39, then 1
3

6t
10 −t = 39 − 6t ). 

 

 On the other hand, our analysis shows how the lack of negative numbers in abacist algebra shaped 

the structure of the algebraic problem-solving procedures (see problem 1, section 3.1). Furthermore, it should 

be noted that the lack of negative numbers led the abacist to conceptualize subtraction in a particular way, 

which makes subtraction play an unsymmetrical role to that of addition. For instance, in abacist algebra, an 

expression like 54+9t does not need to be repaired, through to the homologous expression 54-9t does. 

 The particular algebraic conceptualization of the addition and subtraction operations, led the abacist 

to see the terms in the equation 2x 2 + 54 = 21x  in their ‘natural state’; they could not have assimilated this 

equation to one of the form ax 2 = bx + c  not because they did not know rule for transposition terms -

something they effectively knew, as we saw previously- nor because of the limitations of the rhetorical 

algebraic language that they used, but because the equation 2x 2 = 21x − 54 has lost, in their mathematical 

conceptualization, its ‘natural equilibrium’. 

 We can see then that what led the abacist to distinguish between the equations of the form 

 and those of the form axax 2 = bx + c 2 + c = bx  was -apart from the weight of the Arabian algebraic 

tradition- the specific conceptualization of algebraic subtraction. It could be worthwhile to note at this point 

the abacist algebrists were not concerned with the problem of the ‘unification’ of the six canonical cases, 

particularly the 3 mixed cases (the cases (d), (e) and (f): see section 2) into a single case. It was a post-

mediaeval problem40. We can hypothesize that the ‘unification´ problem became a genuine mathematical 

problem only when negative numbers had developed to occupy a minimal mathematical conceptual space.  

 

                                                           
40The abacist were rather interested in producing new cases. A good example is given by a treatise called Aliabraa  
argibra, attributed to M˚ Dardi of Pisa (fl. 1344): in this treatise we find 198 different type of equations!  
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Let us turn now to the teaching of algebra. In section 1, we said that the history of mathematics may give us a 

new perspective on teaching. Of course, we are not saying that our students have to follow the same path as 

that of ancient mathematicians. Rather, it is a question of better understanding the nature of mathematical 

knowledge and to find, within its historical structure, novel teaching possibilities. One of the points 

concerning the curriculum that can be raised is that of the links between algebra and negative numbers. To 

my knowledge, these two subjects are usually taught independently. History may suggest some new links 

(e.g. integrating the concept of negative numbers in an algebraic teaching sequence). 

 Another point that deserves to be discussed is that of the meaning of algebra in an introductory 

course. Abacist algebra appears -we were able to observe- as a method for solving problems. Abacist 

algebraic knowledge evolved mainly at the “between problems” level. Each family of problems poses 

different difficulties: certain difficulties appear at the parametrization level; others at the syntactic level, etc. 

Furthermore, the algebraic language evolved from a problem solving tool to a mathematical object. (The 

peculiar symbolic notations used by della Francesca –where the geometrical meaning is quite obvious– is just 

one example of a sequence of efforts made by Mediaeval and Renaissance mathematicians to handle the 

unknown and its powers in a more comfortable way than that provided by rhetorical language41). Instead of 

presenting algebra as an achieved complex language, will our students gain a better understanding of 

algebraic concepts if we present them algebra as a problem-solving tool for facing some specific family of 

problems, making that the symbolic language emerges and evolves from the problem-solving activity itself? 

 

The didactic way in which the possible links mentioned above could be done remains to be discussed. 

However, even though we decide not to take into account the historical-epistemological insights, I claim that 

our knowledge about the meaning of algebraic thinking will have matured. For instance, it appears to me that 

once we have seen the role played by the absence of negative numbers within the structure of abacist 

mediaeval algebraic problem-solving procedures, it is very hard to see their presence in modern mathematical 

curricula in the way that we saw them before. 

References 
Arrighi, G. (1965) Il codice L.IV.21 della Bibliotheca degli'Intronati di Siena e la «Bottega dell'abaco a Santa 

Trinita» in Firenze, Physis, Fasc. 4, Anno VII, pp. 369-400. 
Arrighi, G. (1967) (ed.) M° Antonio de' Mazzinghi: Trattato  di Fioretti, Pisa: Domus Galileana. 
Arrighi, G. (1970) (ed.) Piero Della Francesca: Trattato de Abaco, Pisa: Domus Galileana. 
Barbin, E. (1992) L'épreuve professionnelle du CAPES: un enjeu pour les IUFM. Bulletin de l'A.P.M.E.P., 

No. 386, pp. 567-580. 
Bednarz, N., Radford, L., Janvier, B. (1995) Algebra as a problem-solving tool: one unknown or several 

unknowns? Proceedings of the 19 PME Conference, Universidade Federal de Penambuco, Bresil. 
(Forthcoming) 

Bednarz, N. Kieran, C., Lee, L. (forthcoming) Approaches to Algebra: perspectives for research and 
teaching. Kluwer. 

Boncompagni, B. (1857) (ed.) Scritti di Leonardo Pisano matematico del seculo decimoterzo, I. Il Liber 
abaci di Leonardo Pisano. Roma: Tipografia delle Scienze Matematiche e Fisiche. 

                                                           
41Another effort can be found in Bombelli's symbolic language (for a study of the Bombelli's symbolic language see 
Colin and Rojano, 1991). 



20 

Bortolotti, E. (1966) (ed.) L'algebra de Rafael Bombelli, Milano: Feltrinelli. 
Chevallard, Y. (1985) La transposition didactique, France: La pensée sauvage. Deuxième édition, 1991. 
Colin, J. and Rojano, T. (1991) Bombelli, la sincopación del álgebra y la resolución de ecuaciones, 

L'educazione Matematica, Anno XII, Serie III, Vol. 2, pp. 125-161. 
Egmond, W, van (1978) The earliest vernacular treatment of algebra: the libro di Ragioni of Paolo Gerardi 

(1328), Physis, 20, pp. 155-189. 
Filloy, E., Rojano, T. (1984) La aparición del lenguaje Aritmético-Algebraico, L'Educazione Matematica, 

Anno V, No. 3, pp. 278-306. 
Filloy, E., Rojano, T. (1989) Solving Equations: the Transition from Arithmetic to Algebra, For the Learning 

of Mathematics, Vol 9, No. 2, pp. 19-25. 
Franci, R and Toti Rigatelli, L. (1985) Towards a History of Algebra. From Leonardo of Pisa to Luca 

Paciolo, Janus, 72, pp. 17-82. 
Franci, R. (1988) L'Insegnamento della matematica in Italia nel Tre-Quattrocento, Archimede, Fasc. 4, pp. 

182-194. 
Franci, R and Toti Rigatelli, L. (1988) Fourtheenth-century Italian algebra, in: Mathematics from Manuscript 

to Print. 1300-1600, C. Hay (ed.), Oxford: Clarendon Press, pp. 11-29. 
Glaeser, G. (1981) Épistémologie des nombres relatifs. Recherches en Didactique des Mathématiques, Vol. 

2, No. 3, pp. 303-346. 
Goldthwaite, R. A. (1972-73) Schools and Teachers of Commercial Arithmetic in Renaissance Florence, 

Journal of European Economic History, Vol. 1, pp. 418-433. 
Høyrup, J. (1994) The antecedents of Algebra. Preprints og reprints Nr. 1, Department of Languages and 

Culture, Roskilde Unversity Centre. 
Jahnke, H. (1994) The Historical Dimension of Mathematical Understanding. Objectifying the Subjective. 

Proceedings of the 18 PME Conference, J. da Ponte and J. Matos (eds.), Portugal: University of 
Lisbon, Vol. 1, pp. 139-156. 

Le Goff, J. (1956) Marchands et banquiers du Moyen Âge, Presses Universitaires de France, 7e édition, 
1986. 

Lefebvre, J. (1991/92) Qu'est l'algèbre devenue? De Viète (1591) à aujourd'hui (1991), quelques 
changements-clefs. Bulletin AMQ, Vol. 31/32, pp. 27-32. 

Pancanti, M. (1982) (ed.) Giovanni di Bartolo: Certi Chasi, Italia: Quaderni del Centro Studi della 
Matematica medioevale, No. 3.Università di Siena. 

Paton, W. R. (1979) (ed., transl) The Greek Anthology, Cambridge, Massachusetts: Harvard University Press. 
London: William Heinemann Ltd., Vol. V.  

Picutti, E. (1983) Il «Flos» di Leonardo Pisano, Physis, Vol. 25, pp. 293-387. 
Procissi, A. (1983) (ed.) Raffaello Canacci: Ragionamenti d'algebra. I problemi. Italia: Quaderni del Centro 

Studi della Matematica medioevale, No. 7.Università di Siena. 
Radford, L. (1992) Le raisonnement algébrique dans la résolution de problèmes écrits: un modèle 

d'interaction de représentations, Actes du Colloque portant sur l'émergence de l'algèbre, CIRADE, 
Université du Québec à Montréal, pp. 45-64. 

Radford, L. (1993a) Le raisonnement algébrique. Une réflexion épistémologique. Actes du Colloque Élève, 
école, société: pour une approche interdisciplinaire de l'apprentissage, CIRADE, Université du 
Québec à Montréal, pp. 33-45. 

Radford, L. (1993b) L'évolution des idées algébriques. Une étude historico-didactique. École des sciences de 
l'éducation, Université Laurentienne.  

Radford, L. (1994) Moving through Systems of Mathematical Knowledge: from algebra with a single 
unknown to algebra with two unknowns, Proceedings of the 18 PME Conference, J. da Ponte and J. 
Matos (eds.), Portugal: University of Lisbon, Vol 4, pp. 73-80. 

Radford, L. (1995) Linking Psychology and Epistemology: How can the History of Mathematics be a useful 
tool for the comprehension of the students' learning processes? Paper presented at the 21st Annual 
Meeting of the Canadian Society for the History and Philosophy of Mathematics, Université du Québec 
à Montréal, 3-5 juin 1995. 

Radford, L. (forthcoming1) La enseñanza de la ecuación de segundo grado: una propuesta basada en su 
desarrollo historico-conceptual. Memorias de la 9a Reunión Centroamericana y del Caribe sobre 
Formación de Profesores e Investigación en Matemática Educativa, La Habana, Cuba. 

Radford, L. (forthcoming2). Elementary Algebraic Thinking fron the Perspective of the Didactic 
Epistemology, in: Algebraic Processes and Structure, R. Sutherland, T. Rojano, R. Lins, A. Bell (eds.). 



21 

Radford, L. (forthcoming3) Historical Remarks from a Didact point of view of the about the role of Geometry 
and Arithmetic in the development of Elementary Algebra, in: Approaches to Algebra: perspectives for 
research and teaching, N. Bednarz, C. Kieran and L. Lee (eds.). 

Radford, L. (forthcoming4) L'émergence et le développement conceptuel de l'algèbre, Actes de la Première 
Université européenne d'été sur l'histoire et l'épistémologie des mathématiques, France: IREM de 
Montpellier. (Sous presse) 

Rojano, T. (1994) The case of pre-symbolic algebra and the operation of the unknown, Proceedings of the 
18th International Conference for the Psychology of Mathematics Education (PME), Vol. I, pp. 125-
128. 

Saliba, G. (1972) The Meaning of al-jabr wa'l-muqablah, Centaurus, Vol. 17, pp. 189-204. 
Salomone, L. (1982) (ed.) M˚ Benedetto da Firenze: La reghola de Algebra Amuchabale, Italia: Quaderni del 

Centro Studi della Matematica medioevale, No. 2.Università di Siena. 
Salomone, L. (1984) (ed.) Leonardo Pisano: E' Chasi. Della terza parte del XV capitolo del Liber Abaci 

nella trascelta a cura di Maestro Benedetto, Italia: Quaderni del Centro Studi della Matematica 
medioevale, No. 10.Università di Siena. 

Schoenfeld, Al., Arcavi, A. (1988) On the Meaning of Variable, Mathematics Teacher Vol. 81, No. 6, pp. 
420-427. 

Thomaidis, Y. (1993) Aspects of Negative Numbers in the Early 17th Century: An Approach for Didactic 
Reasons, Science & Education, 2, No. 1, pp. 69-86. 

Vergnaud, G. (1990) Epistemology and Psychology of Mathematics Education, in: Mathematics and 
Cognition, P. Nesher and J. Kilpatrick (eds.), Cambridge University Press, pp. 14-30. 

Witmer, T. R. (1968) (trad., ed.) Ars Magna or the Rules of Algebra. Girolamo Cardano. Cambridge, Mass.: 
M.I.T. Press. Reprinted: Dover, 1993. 


