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1RE ROLES OF GEOME1RY AND ARITHMETIC lN 1RE
DEVELOPMENT OF ALGEBRA: HISTORICAL REMARKS

FROM A DIDACTIC PERSPECTIVE

LUIS RADFORD

ln order to provide a brief overview of some of the historical affiliations between
geometry and arithmetic in the emergence of algebra, we discuss some hypotheses on
the origins of Diophantus' algebraic ideas, based on recent historical data. The first
part deals with the concept of unknown and its links to two different currents of
Babylonian mathematics (one arithmetical and the other geometric). The second part
deals with the concepts offormula and variable. Our study suggests that the historical
conceptual structure of our main modern elementary algebraic concepts, that of
unknown and that ofvariable, are quite different. The historical discussion allows us
to raise some questions concerning the raie geometry and arithmetic could play in the
teaching of basic concepts of algebra in junior high school.

1. THE ROOTS OF ALGEBRA: ARITHMETIC OR GEOMETRY?

1.1. The Geometrie Current

The translation and interpretation of ancient Babylonian tablets, during the fIrst half
of this century, by Neugebauer (1935-1937), Neugebauer and Sachs (1945), and
Thureau-Dangin (1938a) provide us with a wealth of knowledge on one of the earliest
forms of mathematics practiced. Many of these tablets deal with numerical problems.
ln most cases, the problem-solving procedure is not completely explained and appears
as a sequence of calculations. This makes it difflcult to understand the way of
thinking foIlowed by the scribe in solving the problem. However, when interpreted
in the wake of present day algebraic concepts and symbols, the calculations acquire
some sense. This interpretation led the translators mentioned above, as weIl as some
historians of mathematics (e.g., Boyer & Merzbach, 1991; Kline, 1972; van der
Waerden, 1961, 1983), to daim that the Babylonians had developed a "Babylonian
algebra." This algebra has been seen to be different from our modern elementary
algebra, principally in its lack of symbolic representations.

The [lfSt problem of tablet BM 139011 is an example of this Babylonian
algebra. ClassicaIly translated, the problem can be formulated as foIlows (cf.,
Thureau-Dangin, 1938a, p. 1, or van der Waerden, 1983, pp. 60-61) : "1have added
the surface and the side ofmy square, and it is 3/4."

The dassical interpretation of the solution is as follows:

Take 1 to be the coefficient [of the side of the square]. Divide 1 into two parts.
1/2 x 1/2 = 1/4 you add to 3/4. 1 is the square of 1. You subtract 1/2, which you have
multiplied by itself, and 1/2 is [the side of the square].



The classical interpretation "sees" the equation xl + x = 3/4 in the statement of
the problem and "sees" the sequence of numerical operations leading to the solution
as:

x=~(~f+~-~
These calculations correspond to our own general fOlmula for such a problem:

x=~m2+c-~
which yields the positive solution for the equation of type xl + bx = c.

Thus, according to the classical interpretation, Babylonian mathematicians
would have known the general formula without being able to express it as sucb,
because they lacked the symbols to do so.

The main argument supporting the idea of a Babylonian algebra is, thus, the
possibility of translating the Babylonians' problems and calculations into modern
arithmetic-algebraic symbolism. However it is an argument whose validity is not
supported by historical evidence (see Unguru, 1975).

There is, however, a completely different interpretation of this type of problem.
ln fact, during the past years, H0Yrup bas studied the problems found in the
Babylonian tablets as weil as the terms used in them (H0YruP, 1987). H0yruP (1990)
claims that:

Old Babylonian "algebra" cannot have been arithmetical, that is, conceptualized as
dealing with unknown numbers as organized by means of numerical operations. Instead it
appears to have been organized on the basis of "naive," non-deductive geometry. (p. 211)

This non-deductive geometry, developed extensively in H0YruP (1985, 1986),
consists of a "cut-and-paste geometry" in which the complicated arithmetical
calculations resulting from the classical interpretation correspond to simple naive
geometric transformations.

For example, H0Yrup translates the problem sbown above (BM 13901) as, "The
surface and the square-line 1bave accumulated: 3/4."

His translation of the solution is as foilows:

1 the projection you put down. The half of 1 you break, 1/2 and 1/2 you make span [a
rectangle, here a square], 1/4 to 3/4 you append: 1, makes 1 equilateral. 1/2 which you
made span you tear out inside 1: 1/2 the square line. (Hl'lyrup, 1986, p. 450)

As one can see from the diagram which accompanies H0Yrup's explanation,2 the
procedure consists of projecting a rectangle of base equal to 1 on the line-side of the
square (Figure 1). Tbe projected rectangle is cut into two rectangles, the base of each
one being equal to 1/2. The rectangle on the rigbt is then transferred to the bottom
(Figure 2). Then a small square is added (Figure 3) in order to obtain a complete
square from which the sought square-line can be found (Figure 4).
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This geometric interpretation is quite different from the classical interpretation
which views such problems as problems dealing with numbers whose solutions are
based on arithmetical (or algebraic) reasoning. Thus, while Neugebauer daims that
"geometric concepts play only a secondary role" (Neugebauer, 1957, p. 65) in
Babylonian algebra. H0YruP argues that naïve geometry is the basis on which such
problems were posed and solved.

The new interpretation of the Babylonian algebra leads us to a re-evaluation of
the role of arithmetic and geometry in the emergence of algebra.

We will discuss in Section 1.3 the influence of the "cut-and-paste geometry" in
the emergence of algebra. Now we have to tum briefly to a Babylonian numeric
current.

1.2. The Numeric Current

This new interpretation of Babylonian algebra, which concems especially those
problems whose translation into modem symbolism can be seen as second degree
equations, does not preclude the existence of a numeric current in Babylonian algebra
(see H0YruP, 1985, pp. 98-1(0). ln fact, there are many problems, especially those
conceming Babylonian commerce, which do not lend themselves to a geometric
interpretation. This is also the case for certain flfst-degree problems (Le., VAT 8520,
No. 1) and the problems found on tablets VAT 8389 and VAT8391--both of which
date back to the first Babylonian dynasty (circa 1900 B.C.).

The problems on tablets VAT 8389 and VAT 8391 concem grain production in
two fields. If we designate a as the production per unit of area of the flfSt field, X as
the area of the flfSt field, {3as the production per unit of area of the second field, and
y as the area of the second field, most of the problems on the tablets can be
formulated, using modem notation, as follows:

aX ± {3Y = c; X ± y = 8

(a, {3, C, and 8 having numerical values particular to each problem).



ln modem notation, Problem 1 of tablet VAT 8389 corresponds to the
following linear system of equations:3

aX - /3Y = C
X+Y=D

The calculations suggest that to find X and Y, the scribe frrst takes afalse
solution: in this case, X 0 = y 0= 8/2 (satisfying the condition X + Y = 8). He then
calculates the production of each field (which he names "faIse grain"), which is, in
modem notation, aXo and /3Yo'

Next, the scribe calculates the excess production of the first field over the
second: aXo - /3Yo' Let Co be this excess. He then calculates the production which
is missing to satisfy the conditions of the problem. ln our notation the production
missing is c - Co'

After that, the scribe caIculates a + /3. This quantity is precisely the excess
production of the fmt field over the second when we add one unit of area to the frrst
field and we subtraet one unit of area from the second field.

To compensate for the missing production c - co, we must make the excess
a + /3 equal to c - co, a problem which can be solved through the tools of
proportional quantities, a field of study in which the ancient pre-Greek
mathematicians excelled. ln fact, making the excess a + /3 equal to c - Co is achieved
by multiplying (a + /3) by the number of units of area to be added to Xo' The
resulting quantity must then be equal to c - co.

The scribe knows that the number of units of area to be added to X, which we
cao designate as z, is obtained by multiplying the inverse of (a + /3) by (c - co), The
number z thus obtained by the scribe is added to the frrst field and subtracted from the
second field, thereby providing the real areas of the fields which are consequently
Xo + z and Yo- z respectively.

The procedure to solve this problem is clearly arithmetical and not geometric.
The tablet allows us to see that it consists of an arithmetical method of false
position: the scribe begins by assigning a numeric value, which is recognized as
being false a priori, to the sought quantities (Le., the areas of the fields). Using the
faIse values and the data given in the problem's statement. he obtains new data. The
new data (here the "false grain") can then be compensated for, to ultimately yield a
correct solution. This method offalse position is used to solve many of the problems
on the Babylonian tablets (see, e.g., Thureau-Dangin, 1938b--tablets Str. 368, VAT
7535, and VAT 7532).

From a historical perspective, it is difficult to establish a link between the
geometric and numeric currents in Babylonian aIgebra (see, however, H!/lyrup, 1990).
It is also difficult to ascertain exactly what influence either of the currents may have
had on the initial development of aIgebra. ln fact. many of the most important early
works containing basic aIgebraic concepts, such as Diophantus' Arithmetica, contain
no explicit references to antecedent sources of inspiration. Nevertheless, we cao trace
certain elements in Diophantus' Arithmetica to the numeric and geometric currents of
Babylonian and Egyptian mathematics.



1.3. Diophantus' Arithmetica

Diophanllls' Arithmetica (circa 250 A.D.) is a collection of problems divided into 13
books, 3 of which remain lost. To clearly trace the links between Diophantus'
algebra and some antecedent mathematical traditions, we must first recall that
Diophantus, like Aristotle, conceived of number as being composed of discrete units.
Moreover, Diophantus believed that numbers can be divided into "categories" or
"classes," each category containing the numbers that share the same exponent: the
frrst category being the squared numbers (designated as .::\1), the second being the
cubed numbers (designated as KI), the third being the squared squares (designated as
sr.::\) and the cubo-cubes (designated by KlX). The problem statements are written as
relations between these categories. Hence, there are no particular numbers given in
the problem statements. Following are two examples.

Book IV, Problem 6:

We wisb to find two numbers, one square the otber cubic, wbicb comprise [i.e., tbat their
product is] a square number. (Sesiano, 1982, p. 90)

Book l, Problem 27:

Find two numbers sucb tbat tbeir sum and tbeir product equal tbe given numbers. (Ver
Eecke, 1959, p. 36--our translation).

Mter having classified numbers on the basis of their exponents at the beginning
of Book l, Diophantus introduces one of the most important concepts to this
discussion: the arithme (the "number") which is "an undetermined quantity of units"
(Ver Eecke, 1959, p. 2). The arithme is introduced for the purpose of representing
the unknown in a problem; it is a heuristic tool in the context of problem solving.4

Problem 27, Book 1 of the Arithmetica, referred to above, establishes a link
between Diophantus' algebra and antecedent mathematical traditions. The solution
begins as follows:

The square of balf of the sum of the numbers we are seeking must exceed by one square the
product of tbese numbers, wbicb is figurative. (Ver Eecke, 1959, p. 36--our translation)

Thus, Diophanllls begins by giving a condition which the numbers must fulfill,
in order that the problem could be solved. The fact that this condition is "figurative"
suggests that Diophanllls is referring to a condition which can be visualized through
a geometric representation (Ver Eecke, 1959, p. 36-37). Furthermore, Diophantus
does not make his thought explicit, which suggests that he is referring to something
weIl known to the reader (cf., H0YruP, 1985, p. 103). It is possible that Diophanllls



is actually referring to a cut-and-paste procedure (see Figure 5):

First, constroet a
square wbose side
is a baIf of the sum
ofnumbers

10

10

96

The problem now is to
transform this figure into
a rectangle of the same
area

exceeding area

1

10+2

Figure 5.

For the problem to be solved numerically (using positive rational numbers, the
only numbers considered by Diopbantus), the exceeding area must be a square. As
we see, the "figurative" condition mentioned by Diopbantus seems to refer strongly
to the above cut-and-paste procedure and suggests a Hnk between Diopbantus'
methods and those of the Babylonian mathematicians belonging to the geometric
current. To continue, Diopbantus' solution to this problem is as follows: "Let the
sum of the numbers equal 20 units, and their product equal 96 units." Diopbantus
then specifies the parameters of the problem:

Let the quantity in excess of the two numbers be 2 arithmes. Thus, because the sum of the
two numbers is 20 units, which when divided by two yields two equal parts, each part will
be half of the sum, or 10 units. Therefore, if we add to one part, and subtract from the



other, half of the quantity in excess of the two numbers, that is 1 arithme, it follows that
the sum will still equal 20 units and that the quantity in excess of the numbers will remain
2 arithmes. Thus, let the greater number be 1 arithme increased by 10 units, which is half
of the sum of numbers, and consequently, the lower number is 10 units minus 1 arithme; it
follows that the sum of these numbers is 20 units and that the quantity in excess of the
numbers is 2 arithmes.

The product of the numbers must equal 96 units. This product is equal to 100 units minus 1
squared arithme; which we equate to 96 units, thereby causing the arithme to be 2 units.
Consequently, the greater number will be 12 units and the lesser number will be 8 units.
These numbers satisfy the initial conditions. (Ver Eecke, 1959, pp. 37-38--our
translation)

To find the greater and lesser numbers, Diophantus used a method very similar
to the one used in tablet VAT 8389 (a method that van der Waerden, 1983,
pp. 62-63, called the "sum and difference"). ln fact, both procedures talce half of the
sum of the numbers in10 account. They fmd a number that is added to and subtracted
from half of the sum of the numbers. This resemblance of methods strongly suggests
a link between Diophantus' methods and those of the Babylonian mathematicians
belonging to the numeric current.

The similarity between Diophantus' method and the "false position" Babylonian
method has been discussed by Gandz (1938) and by Thureau-Dangin (1938a, 1938b).
Thureau-Dangin claims that the/aIse position is in fact an algebraic procedure, where
the unknown is represented by the number "l," for the Babylonians did not develop
any symbolism allowing them to represent the unknown by a letter. However, this
argument rather forces the old Babylonian thinking to fit into the modern algebraic
thinking. On the other hand, Gandz states that Diophantus' algebraic method, shown
in Book 1, Problems 27-30, is a method which was known by the Babylonian
mathematicians and which allowed them 10find the solutions for the mixed second

degree equations. However, il supposes that ancient Babylonian mathematicians had
at their disposaI a complex symbolic language (see Gandz' calculations,
pp. 416 sS.), but there is no historical evidence for this.

On the other hand, we can appreciate that Thureau-Dangin's and Gandz' main
aim is to try to understand Babylonian mathematics. They go from Diophantus to
Babylonian mathematics. We try 10go in the other direction: from the Babylonians
to Diophantus. We think that ancient mathematicians developed arithmetical
methods, such as that of/aIse position, in order to solve problems. Such a method is
not based on algebraic ideas but on an idea of proportionality.

Yet another link between the arithmetical current and Diophantus' Arithmetica
can be found in an Egyptian papyrus (known as Michigan papyrus 620) written
before Diophantus (circa 100 A.D.) (Robbins, 1929). This papyrus contains a series
of numericaI problems that closely resemble many of the problems in Diophantus'
Book 1. Here is an example:

There are four numbers, the sum of which is 9900; let the second exceed the frrst by one
seventh of the first; let the third exceed the sum of the first two by 300, and let the fourth
exceed the sum of the first tlrree by 300; find the numbers.

This papyrus contains the symbol ç which Diophantus used in Arithmetica.
Furthermore, the choice of the unknown in the papyrus is 1/7 of the frrst number--



not unlike Diophantus' choice of the unknown in his problems (a choice which is
surely made to avoid calculations involving fractions: e.g., Book 1, Problem 6).

To sum up our discussion, we can say that, from a his10rical point of view, the roots
of Diophantus' algebra seem to be found in both: (a) a geometric Babylonian
tradition (related 10a cut-and-paste geometric current) and (b) a numeric Babylonian
Egyptian tradition (related to the false position method).5 These mathematical
traditions led to two kinds of different ancient "algebras":
1) On one hand, the "algebra" related to geometry, cultivated, in aIllikelihood,

within the communities of surveyors who dealt with problems about
geometrical figures. One of the paradigmatic problems of this current is to find
the length or width of a rectangle satisfying certain conditions (e.g., the surface
and the side equal 103/4, as in BM 13901 seen above). ln this algebra, the side
of a figure can be seen as a side as weIl as a rectangle--the rectangle whose
height (or projection) is equal to 1. Thus, the length of a side can also represent
the area of the projected rectangle. This kind of algebra is underlined by the
visual conservation of areas of figures submitted to the cut-and-paste procedures.
Algebraic equality refers here 10equalities between areas. Algebraic methods are
essentiaIly based on a sequence of geometric transformations, Ti, starting with
the given figure, Fi and ending with a square Fn of a known area:

11 Tz Tn-1

Fi ~Fz ~ ... ~ F"

The unknowns of the problem (e.g., the lengths of the sides of a rectangle) are
taken into account through the problem-solving procedure. However, the
unknowns are oot the object of calculation.6

2) On the other hand, the numeric tradition led to a "numeric algebra" that dealt
with theoretical problems about numbers (such as those found in Diophantus'
Arithmetica, but with some riddles also; e.g., to find the amount of apples
divided between a certain number of people according to specific conditions).
This kind of algebra is based on a different conceptualization from the geometric
one. Here one does oot have segments 10represent the unknowns. Furthermore,
there is not a "natural" name (like Oside" or "height") to be used in speaking
about the unknowns. A closer look at the problem-solving methods included in
the Arithmetica shows that aIl the numeric algebra deals not with several
unknowns but with a single unknown. Diophantus just caIled the unknown, the
arithme, that is, the number (which should be understood as the number) for
which we are looking. As in the case of the algebra of the geometric tradition,
the numeric algebra supposes a hypothetical thinking: one reasons as if the
number sought was already known. However, in contrast to the algebra of the
geometric current, in the numeric algebra one calculates with and on the
unknown. The calculation with/on the unknown makes it possible for the
emergence of a new kind of calculation that is independent of the context and of
the problem, a/ormal calculus (in the sense that it takes into consideration only
the form--the nôocr, eidos--of the mathematical expressions). Within this new
calculus, algebraic equality refers to equality between species (Radford, 1992),



something that we can translate into modem terms by monoms. The algebraic
methods used to solve problems are based here on transfonnations of monoms.
The goal of these transfonnations is to arrive at a monom equal to another
monom (Le., in modem tenns, to an equation of the fonn a· X' = b .xm), and
then to arrive at an equation of the fonn, a monom equal to a number
(Le., C' xi = d). As we can see, the heuristic behind the resolution of a
problem in each algebra is different.
The mutual influence of these two ldnds of algebras is difficult to detect in

Babylonian mathematical thought. However, this influence is perceptible in
Diophantus' Arithmetica, as we saw before in our example of Problem 27, Book I.
Later on, these algebras seem to have followed separate paths. We can see cut-and
paste geometry reappearing in Arabic soH some centuries later, in the work of Al
Khwarizmi and in that of Abû Bakr. The algebras of numeric and geometric origin
will meet together during the awakening of sciences in the late Latin Mediaeval Age,
as a result of an intensive translation of Arabic and Greek mathematical works into

Latin. Without a doubt, both algebras merged in the Liber Abbaci of Leonardo
Pisano, in the beginning of the l3th century. Even though our modem elementary
algebra looks more like the numerical algebra than the cut-and-paste one, we should
be aware that the development of mediaeval algebra (and to some extent the algebra of
the Renaissance) was organized according to some "types of equations" whose
distinction was completely guided by cut-and-paste geometry.7

Conceming the ancient algebra of the numeric current, the historical records
available today make it possible to reconstruct a scenario of the conceptual
relationships between the false position methods and the Diophantine algebraic ones.
We cannot discuss here such a scenario. Let us simply mention that the "jump" from
arithmetic thinking to algebraic thinking seems to be located in a reinterpretation of
the false position method based on the search for a shorter and direct method for
solving problems according to which one no longer thinks in tenns of false values
but in tenils of the unknown itself.

2. UNKNOWNS AND VARIABLES: 1WO DIFFERENT CONCEPTUALIZATIONS

Our discussion thus far has centered on the concept of unknown. There is, however,
an equally important concept which we have yet to consider: the variable. While the
unknown is a number which does not vary, the variable designates a quantity whose
value can change. A variable varies (see Schoenfeld & Arcavi, 1988, p. 421).

Where can we find the origin of variables in the history of algebra? As in the
case of the unknown and in light of our current historical knowledge, it is difficult to
accurately pinpoint the variable's "big-bang." ln a certain sense, we find some traces
of the concept of variable in some ancient Babylonian tablets. For instance, there are
tablets for reciprocal numbers. But these tablets seem to stress a relationship between
numbers rather than a variational property of a mathematical object. We can,
however, trace certain elements of a more elaborate concept of variable in
Diophantus' book entitled, On Polygonal Numbers.

ln order to better understand the scope of Diophantus' conceptualization of
variables, it is important to note that polygonal numbers emerge in a philosophical
context of classification of numbers, which dates back to the era of the first



Pythagoreans.8 An important book which includes a detailed treatment of polygonal
numbers is Nicomachus' Introduction to Arithmetic (2nd century A.D.). ln this
work, Nicomachus tries to discover patterns between numbers, for example, that
every square number is the sum of two consecutive triangular numbers (D'Ooge,
1926, p. 247).

However, the observed patterns are not proved (at least, not in the Euclidean
sense; this is an altogether different type of mathematics in which philosophical
considerations require no deductive proof).

A result, concerning triangular numbers, probably obtained from a few concrete
numerical examples, is stated by Plutarch (who lived in Nicomachus' time) in the
following terms: "Every triangular number taken eight times and then increased by 1
gives a square" (Heath, 1910/1964, p. 127). It is the generalization of this result to
other polygonal numbers that interested Diophantus in his book, On Polygonal
Numbers.

The book, of which the last part is lost, consists of four deductively connected
propositions, concerning arithmetical progressions. The third, for instance, states
that in an arithmetical progression "the sum of the largest and smallest [terms],
multiplied by the quantity ofnumbers, form a number [equal to] twice the sum of the
given numbers"9 (Ver Eecke, 1959, p. 280--our translation). Using the frrst three
propositions, Diophantus proves the fourth one. Using modem symbols, this
proposition can be stated as:

S" x 8d+(d-2)2 = [(2n-l) d+2]2

where n designates the side of the polygonal number, d designates the difference, and
Sn designates the polygonal number.

Using the fact that a = d + 2 (cf., Footnote 8), the above proposition can also
be written as:

S" x 8 (a-2)+(a-4)2 = [(2n-l) (a-2)+2]2

Diophantus uses this last proposition to obtain an explicit formula to calculate
the polygonal number Sn when the "side," n, is known. This proposition also allows
Diophantus to give a formula to calculate the "side," n, when the number Sn is
known.

Translated into modem notation, the frrst of the formulas can be written as:

[(2n-l) (a-2)+2]2 _(a_4)2S =---------
" 8 (a-2)

(Take twice the side of the polygonal number; from this subtract one unit;
multiply the result by the number of angles minus 2; then add 2 units. Take the
square of the resulting number. From this, subtract the square of the number of
angles minus 4. Divide the result by 8 times the number of angles minus 2 units.
This gives us the polygonal number we are looking for.) (based on the translation of
Ver Eecke, 1959, pp. 290-291)

It is important that we stress the conceptual nature of the numbers S", n, d. and
a in the preceding propositions (or rather, their link to the concept of variable). To do



this, we can refer to certain passages in the proof of proposition 3 mentioned above,
that is: "the sum of the largest and smallest [terms], multiplied by the quantity of
numbers, form a number [equal to] twice the sum of the given numbers."

The proof is divided into two cases: the flfst case is related to an even quantity
of numbers and the second, an odd quantity of numbers. ln the flfSt case, Diophantus
develops bis reasoning taldng into account only six numbers, represented by: o., ~ ,y,
ô, E, ç. (ln the second case he represents five numbers.)10 The fact that he limits
himself to six or five numbers is a result of the symbolic system of representation he
uses (a system which is in fact borrowed from Euclid; for an example, see Elements,
Book IX, prop. 20); nevertheless, the generality of the proof (in the Greek sense) is
not lessened by its limitation to six (or five) numbers.

The quantity of numbers (which we would calI "n" in our modern symbolic
system) is represented by a segment.ll This is the segment 1]v in Figure 6. ln
accord with Diophantus' concept of number, the segment 1]v can be divided into its
units: À, Jl, X ...

The "numbers in equal difference," that is, the numbers o., ~, y, ô, E, ç, are
placed on the segment.

a. ~ y

1 1

11 À Il X

E

'\)

Figure 6. (From Tannery, 1893, Vol. n, p. 457)

This geometric representation allows Diophantus to organize the proof, which
begins by noting (translated into modern notation) that

y-o.=ç-ô

because of the equal difference between numbers. Then, Diophantus transforms this
equality into:

y+ô=ç+o.

which he also writes as:

y + Ô = (Ç + o.) x TlÀ

because TlÀ is equal to the unit
ln the same way, Diophantus obtains:

E + ~ = (Ç + o.) x Àf.1.

We do not need to go beyond this point in the proof. For our purposes, we only
need to see that the quantity "n" of numbers and the number Sn, which is equal to
a. + ~ + y + Ô + E + ç,are stiH not seen as variable numbers. ln fact, n and Sn do
not vary during the proof; "n," for instance, is a given number, chosen from the
beginning.



Neither are the numbers n and Sn empirical set values in Diophantus' work, as
is the case in Nicomachus' development of Polygonal Numbers Theory. Let us
explain this idea Patterns in Nicomachus' work state relations between numbers, but
what supports the validity of patterns (in addition to philosophical premises) is the
fact that when the numbers to which he refers in the patterns are replaced by concrete
numbers, the resulting calculation is true. Thus, the numbers involved in
Nicomachus' propositions are set values, or in order to stress their relationship with
the concrete numbers, we can calI them empirical set values. However, Diophantus
never gives a numerical example. The propositions in Diophantus' theory of
polygonal numbers are supported by a deductive organization, which breaks with
Nicomachus' concrete-arithmetical treatment of numbers, and confers on numbers a
different status. We can say that numbers (such as the numbers n, d, and Sn) become
abstract set values.

We have said before that the numbers n, d, and Sn are not variables in the proof
of a proposition given by Diophantus. Significantly, from the moment Diophantus
states explicitly that one must find the polygonal number when the side is given
(which arrives after all the deductive treatment of Proposition 4 is done), the numbers
n and Sn are no longer abstract set values; they become dynamic quantities that can
have different values depending on the values taken by the other quantity. They
become variable mathematical objects.

This is, of course, a long way from the concept of variable that we find in the
18th century or by Oresme in the 14th century where the variable is especially linked
to continuous quantities and seen as "intensities" associated to "qualities" (see
Clagett, 1968). From the medieval context of the study of motion of bodies,
variables will appear as flowing quantities, and the main problem will be that of
describing the effect of the variation of one variable over another. This description
willlead to the concept offunction.

Diophantus is concerned about variables, not through the concept of function,
but through the concept of formula. His concept of formula is not based on flowing
continuous quantities, but on: (a) an explicit relationship between numbers that are
seen as monads (Le., unities) or fractional parts of monads and (b) an explicit
sequence of calculations allowing one to determine a number given the identity of
another number.

What is it, in Diophantus' work, that makes the emergence of the concept of
variable possible? One reason may be that the problem is transformed from a
relational problem to one involving calculations. This step can be achieved only in a
"calculator's mind" (see Rey, 1948). The presence of the calculator's mind is obvious
in the passages that we showed in the proof of Diophantus' Proposition 3: He uses
the unity as a "real" number (and not only as the generating monad of the early Greek
mathematicians). He performs calculations with the unit y: this is why he can
transform y + 0 = ç + a into y + 0 = (Ç + a) x 'TlÀ-.

This step requires--to pose the problem in the Greek context--that Logistic
(which concerns the calculations of numbers, originally calculations with the
material aspect of numbers, and later the way in which calculations are performed) be
considered a theory of the same intellectual value as Arithmetic (which refers
originally to the study of numbers in its deeper significance, in their essence, without
any relation to the concrete world).12 Arithmetic is concerned with propositions or



theorems that state relations between numbers and/or properties of numbers. The step
that joins Logistic and Arithmetic is not taken by Euclid, but is taken by
Diophantus, in combining two intellectual inheritances: the Babylonian and Egyptian
traditions of calculator mathematicians (as we have seen previously in Section 1) and
the theoretical tradition of bis predecessor in Alexandria, Euclid himself.

We now tUrI}to the differences between unlmowns and variables. The ftrst
difference is found in the context (more specifically, in the goal or intentionality) in
which they appear. ln facto we can note that the main topic of On Polygonal
Numbers is quite different from that of Arithmetica. ln the former the goal is to
establish relationships between numbers, while in the latter it is to solve word
problems (Le., to find the value of one or more unknowns). ln On Polygonal
Numbers, the relations between numbers are stated in terms of propositions;
furthermore, they are organized in a deductive structure. Variables are derived from the
passage from a relational problem to one dealing with abstract set values
calculations. This is not the case in Arithmetica, where the problems refer to
relations between "classes" or "categories" of numbers (squares, cubes, etc.) that
constitute the Theory of Arithmetic.

The second difference between unknowns and variables is found in their

representations. ln the case of On Polygonal Numbers, the key concept is the abstract
set value (which leads to that of variable). Abstract set value is represented
geometrically or by letters, which are included in a geometric representation. ln the
case of Arithmetica, the key concept is the unknown (the arithme) which is not
represented geometrically.

While both of these concepts deal with numbers, their conceptualizations seem
to be entirely different.13

3. IMPLICATIONS FOR THE TEACHING OF ALGEBRA

Wbat role could the preceding bistorical analysis play in the modem day teacbing of
mathematics? It seems to me that the bistorical construction of mathematical

concepts can supply us with a better understanding of the ways in wbicb our students
construct their lmowledge of mathematics. But aside from its contribution to our
comprebension of certain pbenomena arising in the psycbology of mathematics, the
epistemology of mathematics can also provide us with information that allows us to
improve our teacbing methods. Tbus, we can ask ourselves certain questions:
1) Is it to our advantage to develop certain elements of "cut-and-paste geometry,"

as developed by H~yrup, for use in our classrooms in order to facilitate the
acquisition of basic algebraic concepts? Can the teacbing of "cut-and-paste
procedures" awaken in students the analytical thinking that is required in
leaming algebra?

2) Is it to our advantage to introduce certain elements of the "false position"
method prior to introducing the concept of the unlmown in the solution of word
problems?

3) Could we use proportional thinking as a usefullink to algebraic thinking?
4) Can current teacbing methods introduce some appropriate distinction between

the concepts of unlmown and variable, using the bistorical ideas seen bere?



5) Is it reasonable to believe that the development in a deductive context of the
concept of abstract set value, as developed by Diophantus, is a prerequisite to a
deep learning of the concept of variable?
These questions deserve a great deal of reflection and discussion, which are

beyond the scope of this chapter. Question 5, for instance, suggests a way of
thinking about variables that contrasts with the usual way taken to introduce
variables in junior high school, where the inductive context (based on the empirical
set value concept of number) is preferred to a deductive one. Of course, from a
behavioral point of view, the inductive tasks can be accomplished more quickly in
the classroom than the deductive ones. But in terms of real understanding of what a
variable is, our analysis can at least indicate some new didactic dimensions to be
explored, in order to reach a deeper knowledge of the concept of variable.

Our analysis also suggests that symbolism does not capture completely the deep
meaning of the concept of variable, as the teaching of mathematics seems to imply.

However, the results of this epistemological analysis should not be construed as
normative for teaching. Rather, such an analysis is meant to give us a better
understanding of the significance of mathematical knowledge and to provide us with a
path, one of many, for its construction.

NOTES

1 The numbers in the foUowing two translations are in base 10 (and not in base 60); as weU, aU
fractions are represented using the modem symbol "1".
2 This diagram is implicitly referred to in the problem-solving procedure through the meaning of
'geometricaloperations (see H0yrup, 1985, pp. 28-29).
3 The statement of this problem (based on Thureau- Dangin' s French translation, 1938a, p. 103-105) is
as follows: "By bur, 1perceived 4 kur. By second bur, 1 perceived 3 kur of grain. One grain exceeds the
other by 8'20 <sila>. 1 added my fields: 30' <SAR> What are my fields?" (NB: bur is a measure of
surface; kur and sila are measures of capacity. A complete commented solution of this problem can be
found in Radford, 1995a).
4 The arithme is designated as the letter ç, probably, as Heath (1910/1964) suggested, because it is the
last letter in the Greek word arithme (arithmos, aptSlJ.Oç). It is important to note that the symbolism used
to designate the arithme and ils powers (square, cube, etc.) leads us to the first symbolic algebraic
language ever known (see Radford, 1992).
5 There are other problems in Diophantus' Arithmetica whose problem-solving procedures recaU the
false-position method: for example, Book "N" problem 8 (Ver Eecke, 1959, pp. 119-120); Book "IV"
problem 31 (Ver Eecke, 1959, pp. 155-157). These problems are discussed in Katz (1993, pp. 17()'172).
6 For instance, if we refer to the first problem of tablet BM 13901, shown earlier in this chapter, we
can see that the unknown is found by displacemenls of figures. The unknown is not really involved in
calculations, which are performed or executed with known quantities (Radford, 1995a). AIthough
sometimes the scribe takes a fraction of the unknown or the unknowns in order to cut a figure (for some
examples, see H0yrup 1986, pp. 449-455), it does not constitute a truly extended or generalized
calculation with or between unknowns. The Iimils of such a geometric calculus can be better
circumscribed if it is compared to the algebraic calculus which Diophantus develops at the beginning of
his Arithmetica (see Ver Eecke, 1959, pp. 3-9).
7 See Radford (1995b).
8 Remember that polygonal numbers are obtained as the sum of the first numbers in an arithmetical

progression with difference d and fust term al = 1. If we designate, in modern notation, the arithmetical
progression as l, 1 + d, 1 + 2d, ..., then the polygonal numbers are:

SI = 1, S2 = 1+(I+d), S3 = 1+(I+d)+(1+2d), ... ,etc.

If d = 1, we obtain the triangular numbers, if d = 2, we obtain the square numbers, if d = 3, we
obtain the pentagonal numbers, etc. The first triangular numbers are: 1, 3, 6, 10, ... Note that the angles
a of a polygonal number are obtained by adding 2 to ils generating difference d, that is a = d + 2. Thus,



the angles of any triangular number are a = 1 + 2 = 3. The side of a specifie polygonal number
Sn = aJ + a 2+ .... + an is n. Thus the side of the triangular number 6 is 3.
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1lIE ARST TRIANGULAR NUMBERS

S4 = 10SI = 1 S2 = 3S3= 6
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Angles a = 3

Side n = 3 Side n = 4 Side n = 5

9 ln modem notation, this proposition can be slated as: (an +a Jn = 2Sn.
10 A discrete representation of the numbers (i.e., by small circles or other objects, as used by
Nicomachus), would not have suited this praof. ln fact, in order to keep the numbers unspecified, new
"abstract" representations are required. The choice of letters as representations satisfies this
requirement.
Il It should be noted that geometrical segments are used here in a completely different way from that
of Babylonian mathematics! (see Section 1.1).
12 The next passage from Olympiodorus' Seholia to Plato's Gorgias explains the initial difference
between logistie and arithmetie: "It must be understood that the following difference exists: arithmetic
concems itself with the kinds of numbers; logistic, on the other hand, with their material" (cited by
Klein, 1968, p. 13).
13 The distinction between variables and unknowns is not stated explicitly by Diophantus. This
distinction is explicitly made in the 18th century by Leonard Euler, who sees unknowns as objects
belonging to "ordinary analysis" (i.e., algebra) while variables are seen as objects belonging to "new
analysis" (i.e., infinitesimal analysis) (see Sierpinska, 1992, p. 37).


